ai có thể giúp tôi bài này đc ko
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng tỏ rằng tổng 2+2^2+2^3+2^4+...+2^100 ko chia hết cho 14 . Ai có thể giúp tôi câu hỏi này đc ko
A = 2 + 22 + 23 + 24 + ... + 2100
Xét dãy số: 1; 2; 3; 4; ....; 100
Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1
Số số hạng của dãy số trên là: (100 - 1): 1 + 1 = 100
vì 100 : 3 = 33 dư 1 nên khi nhóm 3 số hạng liên tiếp của A thành nhóm thì
A = (2100 + 299 + 298) + (297 + 296 + 295) +...+ (24 + 23 + 22) + 2
A = 297.(23 + 22 + 2) + 294.(23 + 22 + 2) +...+ 2.(23 + 22 + 2) + 2
A = 297.14 + 294.14 + ... + 2.14 + 2
A = 14.(297 + 294 + ... + 2) + 2
14 ⋮ 14; 2 không chia hết cho 14
A không chia hết cho 14
Bài 1:
a, 4x2+6x=2x(2x+3)
b, 12x(x-2y)-9y(x-2y)=3(x-2y)(4x-3y)
c, 3x3-6x2+3x=3x(x2-2x+1)=3x(x-1)2
d, 2x3-2xy2+12x2+18x=2x(x2-y2)+2x(6x+9)=2x(x2+6x+9-y2)
=2x[(x+3)2-y2 ]=2x(x+y+3)(x-y+3)
Bài 2:
a, 5x(x-1)+10x-10=0 <=> 5x(x-1)+10(x-1)=0 <=> 5(x-1)(x+2)=0
\(\Leftrightarrow\orbr{\begin{cases}5\left(x-1\right)=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}}\)
b,(x+2)(x+3)-2x=6 <=> (x+2)(x+3)-2(x+3)=0 <=> (x+3)(x+2-2)=0 <=> x(x+3)=0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}}\)
c, \(\left(x-1\right)\left(x-2\right)-2=0\Leftrightarrow x^2-3x+2-2=0\Leftrightarrow x\left(x-3\right)\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}}\)
Bài 3
a, \(x^4y+3x^3y^2+3x^2y^3+xy^4=xy\left(x^3+3x^2y+3xy^2+y^3\right)=xy\left(x+y\right)^3\)
b, \(x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2\right)-\left(2x\right)^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)
hình học
Bài 1 \(\widehat{D}=360^o-\widehat{A}-\widehat{B}-\widehat{C}=360^o-50^o-120^o-90^o=100^o\)
Bài 2 \(Tc:\widehat{C}+\widehat{D}=360^o-\widehat{A}-\widehat{B}=360^o-50^o-110^o=200^o\)
\(\Rightarrow\widehat{C}=200^o-\widehat{D}\)mà \(\widehat{C}=3\widehat{D}\)nên ta có \(3\widehat{D}=200^o-\widehat{D}\Leftrightarrow4\widehat{D}=200^o\Leftrightarrow\widehat{D}=50^o\Rightarrow\widehat{C}=3.50^o=150^o\)
Bài 4 \(\widehat{C}+\widehat{D}=360^o-90^o-110^o=160^o\)
Áp dụng dãy tỉ số bằng nhau
\(\frac{\widehat{C}}{3}=\frac{\widehat{D}}{5}=\frac{\widehat{C}+\widehat{D}}{3+5}=\frac{160^0}{8}=30^o\)
\(\Rightarrow\frac{\widehat{C}}{3}=30^o\Rightarrow\widehat{C}=30^o.3=90^o\Rightarrow\widehat{D}=160^o-90^o=70^o\)
goị từng chấm là 1 2 3 4 5 6 7 8 9
Ta có ma trận sau :))
1 2 3
4 5 6
7 8 9
Nối lần lượt theo thứ tự sau:
`1->2->3->6->6->4->7->8->9`.
thời gian đi là:
17h45'-12h10'-1h5'=1h30'=1,5h
quãng đường ab là:
4,5×43=193,5(km)
Đáp số:193,5km
Lời giải:
Áp dụng định lý Viet đối với pt $x^2+3x-7=0$ ta có:
$x_1+x_2=-3$
$x_1x_2=-7$
Khi đó:
$\frac{1}{x_1-1}+\frac{1}{x_2-1}=\frac{x_2-1+x_1-1}{(x_1-1)(x_2-1)}$
$=\frac{(x_1+x_2)-2}{x_1x_2-(x_1+x_2)+1}=\frac{-3-2}{-7-(-3)+1}=\frac{5}{3}$
$\frac{1}{x_1-1}.\frac{1}{x_2-1}=\frac{1}{(x_1-1)(x_2-1)}=\frac{1}{x_1x_2-(x_1+x_2)+1}=\frac{1}{-7-(-3)+1}=\frac{-1}{3}$
Khi đó áp dụng định lý Viet đảo, $\frac{1}{x_1-1}, \frac{1}{x_2-1}$ là nghiệm của pt:
$x^2-\frac{5}{3}x-\frac{1}{3}=0$
Lời giải:
Áp dụng định lý Viet đối với pt $x^2+3x-7=0$ ta có:
$x_1+x_2=-3$
$x_1x_2=-7$
Khi đó:
$\frac{1}{x_1-1}+\frac{1}{x_2-1}=\frac{x_2-1+x_1-1}{(x_1-1)(x_2-1)}$
$=\frac{(x_1+x_2)-2}{x_1x_2-(x_1+x_2)+1}=\frac{-3-2}{-7-(-3)+1}=\frac{5}{3}$
$\frac{1}{x_1-1}.\frac{1}{x_2-1}=\frac{1}{(x_1-1)(x_2-1)}=\frac{1}{x_1x_2-(x_1+x_2)+1}=\frac{1}{-7-(-3)+1}=\frac{-1}{3}$
Khi đó áp dụng định lý Viet đảo, $\frac{1}{x_1-1}, \frac{1}{x_2-1}$ là nghiệm của pt:
$x^2-\frac{5}{3}x-\frac{1}{3}=0$
chọn A
A.5,04 lít