K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔABC cân tại A

mà AH là đường cao ứng với cạnh đáy BC

nên H là trung điểm của BC

Xét ΔABC có 

I là trung điểm của AB

H là trung điểm của BC

Do đó: IH là đường trung bình của ΔBAC

Suy ra: IH//AC và \(IH=\dfrac{AC}{2}\)

mà K∈AC và \(AK=\dfrac{AC}{2}\)

nên IH//AK và IH=AK

Xét tứ giác AIHK có 

HI//AK

HI=AK

Do đó: AIHK là hình bình hành

b: Xét ΔBAC có

I là trung điểm của AB

K là trung điểm của AC

Do đó: IK là đường trung bình của ΔBAC

Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\)

mà \(BH=HC=\dfrac{BC}{2}\)

nên IK=BH=HC

Xét tứ giác BIKH có

IK//BH

IK=BH

Do đó: BIKH là hình bình hành

Xét tứ giác CKIH có 

IK//HC

IK=HC

Do đó: CKIH là hình bình hành

16 tháng 12 2022

a: Xet ΔABC có AI/AB=AK/AC

nên IK//BC

=>BIKC là hình thang

mà góc B=góc C

nên BIKC là hình thang cân

b: Xét ΔBAC có BH/BC=BI/BA

nên HI//AC và HI=AC/2

=>HI//AK và HI=AK

=>AIHK là hình bình hành

mà AI=AK

nên AIHK là hình thoi

16 tháng 12 2022

Lí do AI=AK ạ?

4 tháng 1 2017

a) Xét tứ giác ADME có:

∠(DAE) = ∠(ADM) = ∠(AEM) = 90o

⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).

b) Ta có ME // AB ( cùng vuông góc AC)

M là trung điểm của BC (gt)

⇒ E là trung điểm của AC.

Ta có E là trung điểm của AC (cmt)

Chứng minh tương tự ta có D là trung điểm của AB

Do đó DE là đường trung bình của ΔABC

⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC

⇒ Tứ giác CMDE là hình bình hành.

c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)

Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)

DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)

Từ (1) và (2) ⇒ MHDE là hình thang cân.

d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH

Xét ΔDIH và ΔKIA có

IH = IA

∠DIH = ∠AIK (đối đỉnh),

∠H1 = ∠A1(so le trong)

ΔDIH = ΔKIA (g.c.g)

⇒ ID = IK

Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành

⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC

29 tháng 12 2023

a: ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

Xét ΔCAB có

H,K lần lượt là trung điểm của CB,CA

=>HK là đường trung bình của ΔCAB

=>HK//AB và \(HK=\dfrac{AB}{2}\)

Xét tứ giác AKHB có KH//AB

nên AKHB là hình thang

b: Ta có: AD\(\perp\)AH

BC\(\perp\)AH

Do đó: AD/BC

=>AD//BH

Xét tứ giác ADHB có

AD//HB

AB//HD

Do đó: ADHB là hình bình hành

 

25 tháng 10 2017

A B C H D E F

a) DE là đường trung bình của tam giác nên DE//BC và DE = 1/2 BC = BF

=> BDEF là hình bình hành vì có cặp cạnh đối DE và BF song song và bằng nhau.

b) Tam giác vuông HBA có HD là trung tuấn ứng với cạnh huyền => HD = 1/2 AB = BD

=> Tam giác DBH cân tại D.

c) Điểm G ở đâu hả bạn?

23 tháng 10 2017

a. Xét ∆AHB vuông tại H có HM là đường 

đường trung tuyến ( gt ) nên HM =

2AB( 1 ) 

Trong ∆ABC có N là trung điểm của AC ( gt ) O

và K là trung điểm của BC ( gt ) nên NK là 

đường trung bình của ∆ABC → NK = 2AB(  2 ) B H K C

Từ ( 1 ) & ( 2 ) → HM = NK I

b) Trong ∆AHC vuông tại H có HN là đường trung tuyến ( gt ) nên HN = AC( 3 )

+ ∆ABC có M là trung điểm của AB ( gt ) và K là trung điểm của BC ( gt ) nên MK là 

đường trung bình của ∆ABC → MK = AC ( 4)

Từ ( 3 ) & ( 4 ) → HN = 2MK (a)

+ ∆ABC có M là trung điểm của AB ( gt ) và N là trung điểm của AC ( gt ) nên MN là 

đường trung bình của ∆ABC → MN // BC hay MN // KH 

→ MNKH là hình thang (b). Từ (a) & (b) → MNKH là hình thang cân.