K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2024

A =  4 - \(x^2\) + 2\(x\) 

A = - (\(x^2\) - 2\(x\) + 1)  + 5

A = - (\(x-1\))2 + 5

Vì (\(x-1\))2 ≥ 0  ∀ \(x\) ⇒ - (\(x-1\))2 ≤ 0 ∀ \(x\) ⇒ -(\(x-1\))2 + 5 ≤ 5 ∀\(x\)

Dấu bằng xảy ra khi \(x-1\) = 0 ⇒ \(x=1\)

Vậy Amax = 5 khi \(x=1\)

29 tháng 8 2016

\(A=\left(2x+\frac{1}{3}\right)^4-1\) . Có: \(\left(2x+\frac{1}{3}\right)\ge0\)

\(\Rightarrow\left(2x+\frac{1}{3}\right)^4-1\ge-1\)

Dấu = xảy ra khi: \(2x+\frac{1}{3}=0\)

\(\Rightarrow2x=-\frac{1}{3}\)

\(\Rightarrow x=-\frac{1}{3}:2=-\frac{1}{6}\)

Vậy: \(Min_A=-1\) tại \(x=-\frac{1}{6}\)

14 tháng 3 2017

a ) \(A=\left|2x-2\right|+\left|2x-2019\right|\ge\left|2-2x+2x-2019\right|=\left|2-2019\right|=2017\)

Để A đạt GTNN là 2017 <=> \(\left(2-2x\right)\left(2x-2019\right)\ge0\Rightarrow1\le x\le\frac{2019}{2}\)

b ) \(\left|2x-4\right|-\left|6-3x\right|=-1\)

\(\Leftrightarrow2\left|x-2\right|-3\left|x-2\right|=-1\)

\(\Leftrightarrow-\left|x-2\right|=-1\)

\(\Rightarrow\left|x-2\right|=1\)

\(\Rightarrow x=1;3\)

Mà x lớn nhất => x = 3

26 tháng 10 2014

A= x2-2x = ( x2-2x + 1 ) - 1 = -1 (x-1)2 . Vì (x-1)2 lớn hơn hoặc bằng 0 ==> Min A = 1. Khi x = 1 

B = -( x2- 4x + 4 +1) = -1-(x-2)2 < -1 ==> Max B = - 1 khi x = 2 

Phân tích đa thức x4 + 6x3+11x2+6x = x(x+1)(x+2)(x+3) thành nhân tử tích của 4 số tự nhiên liên tiếp chia hết cho 24

20 tháng 7 2016

cại đcm may

16 tháng 12 2015

GTNN là -2009 <=> x = 2; y = 3

C không có GTLN vì x và y càng lớn hoặc càng nhỏ thì -|x - 2| và -|y - 3| càng nhỏ

16 tháng 12 2015

 

Vì  - / x-2/ </0

và - / y -3/ </ 0

=> C = -/ x-2/ - / y -3/ - 2009 </ 0+0-2009 = - 2009

Max C = -2009 khi  x -2 =0 => x =2 và y -3 =0 => y =3

 

4 tháng 8 2016

ta có a=3-x(1-2x)-(x-1)(x+2)=3-x+2x^2 -x^2-x+2=x^2-2x+5=(x^2 -2x+1)+4=(x-1)2+4< hoặc =4 <=>gtnn của a là 4 khi x-1=0 =>x=1

12 tháng 12 2016

(x-1)^2+2(x-3) tinh

a:

ĐKXĐ: x<>2

|2x-3|=1

=>\(\left[{}\begin{matrix}2x-3=1\\2x-3=-1\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=2\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)

Thay x=1 vào A, ta được:

\(A=\dfrac{1+1^2}{2-1}=\dfrac{2}{1}=2\)

b: ĐKXĐ: \(x\notin\left\{-1;2\right\}\)

\(B=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{x^2-x-2}\)

\(=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{\left(x-2\right)\left(x+1\right)}\)

\(=\dfrac{2x\left(x-2\right)+3\left(x+1\right)-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)

\(=\dfrac{2x^2-4x+3x+3-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)

\(=\dfrac{-x+2}{\left(x+1\right)\left(x-2\right)}=-\dfrac{1}{x+1}\)

c: \(P=A\cdot B=\dfrac{-1}{x+1}\cdot\dfrac{x\left(x+1\right)}{2-x}=\dfrac{x}{x-2}\)

\(=\dfrac{x-2+2}{x-2}=1+\dfrac{2}{x-2}\)

Để P lớn nhất thì \(\dfrac{2}{x-2}\) max

=>x-2=1

=>x=3(nhận)