Giải hệ phương trình:
\(\begin{cases}x^2\left(2013y-2012\right)=1\\x\left(y^2+2012\right)=2013\end{cases}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(DK:\hept{\begin{cases}x>0&y>\frac{2012}{2013}&\end{cases}}\)
HPT
\(\text{ }\Leftrightarrow\hept{\begin{cases}2013\sqrt{2013y-2012}=\frac{2013}{x}\left(1\right)\\y^2+2012=\frac{2013}{x}\left(2\right)\end{cases}}\)
\(\left(1\right),\left(2\right)\Rightarrow y^2-2013\sqrt{2013y-2012}+2012=0\)
\(\Leftrightarrow\left(y^2-1\right)-2013\left(\sqrt{2013y-2012}-1\right)=0\)
\(\Leftrightarrow\left(y+1\right)\left(y-1\right)-\frac{2013^2\left(y-1\right)}{\sqrt{2013y-2012}+1}=0\)
\(\Leftrightarrow\left(y-1\right)\left(y+1-\frac{2013^2}{\sqrt{2013y-2012}+1}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=1\\y+1-\frac{2013^2}{\sqrt{2013y-2012}+1}=0\end{cases}}\)
Cai PT thu to ay vo nghiem nhung biet chung minh :)
\(\Rightarrow x=1\)
Vay nghiem cua HPT la \(\left(x;y\right)=\left(1;1\right)\)
\(\hept{\begin{cases}\left(x+\sqrt{x^2+2012}\right)\left(y+\sqrt{y^2+2012}\right)=2012\left(1\right)\\x^2+z^2-4\left(y+z\right)+8=0\left(2\right)\end{cases}}\)
Ta có:(1) \(\Leftrightarrow\left(x+\sqrt{x^2+2012}\right)\left(y+\sqrt{y^2+2012}\right)\left(\sqrt{y^2+2012}-y\right)\)\(=2012\left(\sqrt{y^2+2012}-y\right)\)(Do \(\sqrt{y^2+2012}-y\ne0\forall y\))
\(\Leftrightarrow2012\left(x+\sqrt{x^2+2012}\right)=2012\left(\sqrt{y^2+2012}-y\right)\)
\(\Leftrightarrow x+\sqrt{x^2+2012}=\sqrt{y^2+2012}-y\)\(\Leftrightarrow x+y=\sqrt{y^2+2012}-\sqrt{x^2+2012}\)
\(\Leftrightarrow x+y=\)\(\frac{\left(\sqrt{y^2+2012}+\sqrt{x^2+2012}\right)\left(\sqrt{y^2+2012}-\sqrt{x^2+2012}\right)}{\sqrt{y^2+2012}+\sqrt{x^2+2012}}\)
\(\Leftrightarrow x+y=\frac{y^2-x^2}{\sqrt{y^2+2012}+\sqrt{x^2+2012}}\)\(\Leftrightarrow\left(x+y\right)\frac{\sqrt{y^2+2012}-y+\sqrt{x^2+2012}+x}{\sqrt{y^2+2012}+\sqrt{x^2+2012}}=0\)
Do \(\hept{\begin{cases}\sqrt{y^2+2012}>\sqrt{y^2}=\left|y\right|\ge y\forall y\\\sqrt{x^2+2012}>\sqrt{x^2}=\left|x\right|\ge-x\forall x\end{cases}}\)\(\Rightarrow\sqrt{y^2+2012}-y+\sqrt{x^2+2012}+x>0\forall x,y\Rightarrow x+y=0\)
\(\Rightarrow y=-x\)
Thay y = -x vào (2), ta được: \(x^2+z^2+4x-4z+8=0\)
\(\Leftrightarrow\left(x+2\right)^2+\left(z-2\right)^2=0\Leftrightarrow\hept{\begin{cases}x=-2\\z=2\end{cases}}\Rightarrow y=-x=2\)
Vậy hệ có nghiệm \(\left(x;y;z\right)=\left(-2;2;2\right)\)
2)
sử dụng phương pháp nhân liên hợp ở pt (1) ta được
\(\hept{\begin{cases}x+\sqrt{2012+x^2}=\sqrt{y^2+2012}-y\\y+\sqrt{y^2+2012}=\sqrt{x^2+2012}-x\end{cases}}\)
cộng 2 vế lại được x=-y
rồi sao?? mik đíu hiểu pt 2 lôi z ở đâu
Câu 1: ĐK: x khác -1/2, y khác -2
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:
\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)
=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)
Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>
\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)
\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)
\(\Leftrightarrow a^2+1=2a\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)
Đặt \(\hept{\begin{cases}x^{671}=a\\y^{671}=b\end{cases}}\)thì ta có
\(\hept{\begin{cases}a+b=8,023\\a^2+b^2=32,801425\end{cases}}\)
\(\Rightarrow\left(a+b\right)^2=64,368529\)
\(\Leftrightarrow=ab=15,783552\)
Ta cần tính
\(F=\left(\frac{a^3+b^3}{2012}\right)^3-8,1234\)
\(=\left(\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{2012}\right)^3-8,1234\)
\(=\left(\frac{8,023.\left(32,801425-15,783552\right)}{2012}\right)^3-8,1234\)
\(=-8,12309\)
đề này dọa người thôi, máy tính mà ==" có thấy j khó =="
Ta có \(\left(x-y\right)\left(x^2-y^2\right)=\left(x+y\right)\left(x^2+y^2\right)\Leftrightarrow x^3-x^2y-xy^2+y^3=x^3+x^2y+xy^2+y^3\)
<=> 2xy(x+y)=0
đến đây tìm mối quan hệ và tự giải nhá
a) \(\left(xy+1\right)^2=25\)
\(\Leftrightarrow\orbr{\begin{cases}xy+1=5\\xy+1=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}xy=4\\xy=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{y}\\x=-\frac{6}{y}\end{cases}}\)
+ Nếu: \(x=\frac{4}{y}\Leftrightarrow\left(\frac{4}{y}+y\right)^2=49\)
\(\Leftrightarrow y^2+8+\frac{16}{y^2}=49\)
\(\Leftrightarrow\frac{y^4+16}{y^2}=41\)
\(\Leftrightarrow y^4-41y^2+16=0\) => y vô tỉ (loại)
+ Nếu: \(x=-\frac{6}{y}\Rightarrow\left(y-\frac{6}{y}\right)^2=49\)
\(\Leftrightarrow y^2+\frac{36}{y^2}=49+12\)
\(\Leftrightarrow y^4-61y^2+36=0\) => y vô tỉ (loại)
=> hpt vô nghiệm
b) tương tự