a/3=b/4=c/2, biết 2a+3b+c2=100 vậy a,b,c bằng mấy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 4x^2 - 12xy + 9y^2
=(2x)^2 - 2.2.3xy + (3y)^2
=(2x+3y)^2
b) 27a^3 - 64b^3
=(3a)^3 - (4b)^3
=(3a - 4b) [(3a)^2 +3a.4b +(4B)^2]
d) (2x - 6y)^2 - (3xy - 4)^2
=[ (2x - 6y)+ (3xy - 4) ] [ (2x - 6y)- (3xy - 4) ]
\(1,a,4x^2-12xy+9y^2\)
\(=\left(2x\right)^2-2.3.2xy+\left(3y\right)^2\)
\(=\left(2x-3y\right)^2\)
\(b,27a^3-64b^3\)
\(=\left(3a\right)^3-\left(4b\right)^3\)
\(\left(3a-4b\right)\left(9a^2+12ab+16b^2\right)\)
Bài 1:
a) Có: 4a = 3b => \(\dfrac{a}{3}=\dfrac{b}{4}\) => \(\dfrac{a}{15}=\dfrac{b}{20}\)
7b = 5c => \(\dfrac{b}{5}=\dfrac{c}{7}\) => \(\dfrac{b}{20}=\dfrac{c}{28}\)
=> \(\dfrac{a}{15}=\dfrac{b}{20}=\dfrac{c}{28}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{15}=\dfrac{b}{20}=\dfrac{c}{28}=\dfrac{2a+3b-c}{30+60-28}=\dfrac{186}{62}=3\)
=> \(\left\{{}\begin{matrix}a=45\\b=60\\c=84\end{matrix}\right.\)
b) Tương tự câu a
c) Đặt \(\dfrac{a-1}{2}=\dfrac{b-2}{3}=\dfrac{c-3}{4}=k\)
=> \(\left\{{}\begin{matrix}a=2k+1\\b=3k+2\\c=4k+3\end{matrix}\right.\)
Mà a - 2b + 3c = 14 => 2k + 1 - 6k - 4 + 12k + 9 = 8k + 6 = 14 => k = 1
=> \(\left\{{}\begin{matrix}a=3\\b=5\\c=7\end{matrix}\right.\)
d) Từ a:b:c = 3:4:5 => \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)
Đặt \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=k\)
=> \(\left\{{}\begin{matrix}a=3k\\b=4k\\c=5k\end{matrix}\right.\)
Mà 2a2 + 2b2 - 3c2 = -100 => 18k2 + 32k2 - 75k2 = -100 => k2 = 4 => k = \(\pm\)2
Với k = 2 => \(\left\{{}\begin{matrix}a=6\\b=8\\c=10\end{matrix}\right.\)
Với k = -2 => \(\left\{{}\begin{matrix}a=-6\\b=-8\\c=-10\end{matrix}\right.\)
Bài 2:
Nửa chu vi hình chữ nhật là: 90:2 = 45 (m)
Tỉ số giữa chiều dài và chiều rộng = \(\dfrac{2}{3}\)=> chiều rộng = \(\dfrac{2}{5}\) nửa chu vi
=> chiều rộng = 18(m) => chiều dài = 27(m)
Hì hì, thật ra thì mình không biết giúp thằng bạn mình như thế nào nên đành tự đăng câu hỏi vậy :))
theo đề bài ta có :
a và b tỉ lệ nghịch với 3 và 2
=> 3a = 2b \(\Rightarrow\dfrac{a}{2}=\dfrac{b}{3}\Rightarrow\dfrac{a}{4}=\dfrac{b}{6}\) ( 1 )
b và c tỉ lệ nghịch với 3 và 2
=> 3b = 2c => \(\dfrac{b}{2}=\dfrac{c}{3}\Rightarrow\dfrac{b}{6}=\dfrac{c}{9}\) ( 2 )
Từ ( 1 ), ( 2 ) => \(\dfrac{a}{4}=\dfrac{b}{6}=\dfrac{c}{9}\Rightarrow\dfrac{2a}{8}=\dfrac{3b}{18}=\dfrac{4c}{36}\) và 2a + 3b - 4c = 100
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{2a}{8}=\dfrac{3b}{18}=\dfrac{4c}{36}=\dfrac{2a+3b-4c}{8+18-36}=\dfrac{100}{-10}=-10\)
\(\dfrac{a}{4}=-10\Rightarrow a=-40\)
\(\dfrac{b}{6}=-10\Rightarrow b=-60\)
\(\dfrac{c}{9}=-10=>c=-90\)
Vậy 3 số a,b,c lần lượt là -40 ; -60 ; -90
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{2}=\frac{2a}{6}=\frac{3}{12}=\frac{c}{4}=\frac{2a+3b+2c}{6+12+4}=\frac{100}{22}=\frac{50}{11}\)
\(\Rightarrow\begin{cases}\frac{a}{3}=\frac{50}{11}\\\frac{b}{4}=\frac{50}{11}\\\frac{c}{2}=\frac{50}{11}\end{cases}\)\(\Rightarrow\begin{cases}a=\frac{150}{11}\\b=\frac{200}{11}\\c=\frac{100}{11}\end{cases}\)
Vậy \(a=\frac{150}{11};b=\frac{200}{11};c=\frac{100}{11}\)