Cho a + b+c = 0. Tính (a3 + b3 + a2c + b2c - abc) = ?
Tập hợp các giá trị của x biết
x4 + x3 + 2x - 4 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(0\le a,b,c\le1\)
nên\(\left\{{}\begin{matrix}\left(a^2-1\right)\left(b-1\right)\ge0\\\left(b^2-1\right)\left(c-1\right)\ge0\\\left(c^2-1\right)\left(a-1\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2b-b-a^2+1\ge0\\b^2c-c-b^2+1\ge0\\c^2a-a-c^2+1\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2b\ge a^2+b-1\\b^2c\ge b^2+c-1\\c^2a\ge c^2+a-1\end{matrix}\right.\)
Ta cũng có:
\(2\left(a^3+b^3+c^3\right)\le a^2+b+b^2+c+c^2+a\)
Do đó \(T=2\left(a^3+b^3+c^3\right)-\left(a^2b+b^2c+c^2a\right)\)
\(\le a^2+b+b^2+c+c^2+a\)\(-\left(a^2+b-1+b^2+c-1+c^2+a-1\right)\)
\(=3\)
Vậy GTLN của T=3, đạt được chẳng hạn khi \(a=1;b=0;c=1\)
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....
a3 + b3 + a2c + b2c - abc
= (a3 + b3) + ( a2c - abc + b2c)
= (a + b) ( a2 - ab +b2 ) + c( a2 - ab +b2)
= ( a + b + c ) ( a2 - ab + b2 )
Với a+b+c=0 => A = 0 * ( a2 - ab + b2 ) = 0 (theo giả thiết)
b)x4 + x3 + 2x - 4 = 0
\(\Leftrightarrow x^4+x^3-2x^2+2x^2+2x-4=0\)
\(\Leftrightarrow x^2\left(x^2+x-2\right)+2\left(x^2+x-2\right)=0\)
\(\Leftrightarrow\left(x^2+x-2\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\left(x^2+2x-x+2\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\left[x\left(x+2\right)-\left(x+2\right)\right]\left(x^2+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-2\\x^2+2>0\left(loai\right)\end{array}\right.\)
Vậy tập nghiệm của pt là S={1;-2}