Bài 12 : Tìm x thuộc Q :
a. ( x - 1/2 ) mũ 2 = 0 c. ( 2x - 1 ) mũ 3 = -8
b. ( x - 2 ) mũ 2 = 1 d. ( x + 1/2 ) mũ 2 = 1/16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( x - 3 )2 - 4 = 0
<=> ( x - 3 )2 - 22 = 0
<=> ( x - 3 - 2 )( x - 3 + 2 ) = 0
<=> ( x - 5 )( x - 1 ) = 0
<=> x = 5 hoặc x = 1
b( 2x + 3 )2 - ( 2x + 1 )( 2x - 1 ) = 22
<=> 4x2 + 12x + 9 - ( 4x2 - 1 ) = 22
<=> 4x2 + 12x + 9 - 4x2 + 1 = 22
<=> 12x + 10 = 22
<=> 12x = 12
<=> x = 1
c) ( 4x + 3 )( 4x - 3 ) - ( 4x - 5 )2 = 16
<=> 16x2 - 9 - ( 16x2 - 40x + 25 ) = 16
<=> 16x2 - 9 - 16x2 + 40x - 25 = 16
<=> 40x - 34 = 16
<=> 40x = 50
<=> x = 50/40 = 5/4
d) x3 - 9x2 + 27x - 27 = -8
<=> ( x - 3 )3 = -8
<=> ( x - 3 )3 = (-2)3
<=> x - 3 = -2
<=> x = 1
e) ( x + 1 )3 - x2( x + 3 ) = 2
<=> x3 + 3x2 + 3x + 1 - x3 - 3x2 = 2
<=> 3x + 1 = 2
<=> 3x = 1
<=> x = 1/3
f) ( x - 2 )3 - x( x - 1 )( x + 1 ) + 6x2 = 5
<=> x3 - 6x2 + 12x - 8 - x( x2 - 1 ) + 6x2 = 5
<=> x3 + 12x - 8 - x3 + x = 5
<=> 13x - 8 = 5
<=> 13x = 13
<=> x = 1
a) \(\left(x-3\right)^2-4=0\)
=> \(\left(x-3\right)^2-2^2=0\)
=> \(\left(x-3-2\right)\left(x-3+2\right)=0\)
=> \(\left(x-5\right)\left(x-1\right)=0\)
=> \(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
b) \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)
=> \(\left(2x+3\right)^2-\left[\left(2x\right)^2-1^2\right]=22\)
=> \(\left(2x+3\right)^2-\left(4x^2-1\right)=22\)
=> \(\left(2x\right)^2+2\cdot2x\cdot3+3^2-4x^2+1=22\)
=> \(4x^2+12x+9-4x^2+1=22\)
=> \(12x+9+1=22\)
=> \(12x+10=22\)
=> 12x = 12
=> x = 1
c) \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=16\)
=> \(\left(4x\right)^2-3^2-\left[\left(4x\right)^2-2\cdot4x\cdot5+5^2\right]=16\)
=> \(16x^2-9-\left(16x^2-40x+25\right)=16\)
=> \(16x^2-9-16x^2+40x-25=16\)
=> \(-9+40x-25=16\)
=> \(40x=16+25-\left(-9\right)=16+25+9=50\)
=> x = 50/40 = 5/4
d) \(x^3-9x^2+27x-27=-8\)
=> \(x^3-3\cdot x^2\cdot3+3\cdot x\cdot3^2-3^3=8\)
=> \(\left(x-3\right)^3=-8\)
=> \(\left(x-3\right)^3=\left(-2\right)^3\)
=> x - 3 = -2 => x = 1
e) \(\left(x+1\right)^3-x^2\left(x+3\right)=2\)
=> \(x^3+3x^2+3x+1-x^3-3x^2=2\)
=> \(3x+1=2\)
=> \(3x=1\)=> x = 1/3
f) \(\left(x-2\right)^3-x\left(x-1\right)\left(x+1\right)+6x^2=5\)
=> \(x^3-3\cdot x^2\cdot2+3\cdot x\cdot2^2-2^3-x\left(x^2-1\right)+6x^2=5\)
=> \(x^3-6x^2+12x-8-x^3+x+6x^2=5\)
=> \(\left(12x+x\right)-8=5\)
=> 13x = 13
=> x = 1
Bài 13 : So sánh
2225 và 3150
Ta có :
2225 = ( 23 )75 = 875
3150 = ( 32 )75 = 975
Vì 875 < 975 ( 8 < 9 )
Nên 2225 < 3150
a. x mũ 2 - 2x + 1 = 25
= x^2 + 2.x.1 + 1^2
= ( x + 1 ) ^2
ko bt có đúng ko nữa, mấy câu kia tui ko bt lm
Bài 5 :
a, \(2x\left(x-3\right)+x-3=0\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\Leftrightarrow x=-\frac{1}{2};x=3\)
b, \(x\left(x+1\right)-x-1=0\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\Leftrightarrow x=\pm1\)
c, sửa đề \(x^3-3x^2+x-3=0\Leftrightarrow x^2\left(x-3\right)+x-3=0\)
\(\Leftrightarrow\left(x^2+1>0\right)\left(x-3\right)=0\Leftrightarrow x=3\)
d, \(3x^2\left(2x-1\right)+1-4x^2=0\Leftrightarrow3x^2\left(2x-1\right)+\left(1-2x\right)\left(1+2x\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(3x^2-2x-1\right)=0\Leftrightarrow\left(2x-1\right)\left(3x+1\right)\left(x-1\right)=0\Leftrightarrow x=1;x=-\frac{1}{3};x=\frac{1}{2}\)
e, \(x^3+2x-x^2-2=0\Leftrightarrow x\left(x^2+2\right)-\left(x^2+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+2>0\right)=0\Leftrightarrow x=1\)
Bài 1:
29.(85-47)+85.(47-29)
=29.38+85.18
=1102+1530
=2632
BÀI 2
a, 15x = -75
x =( -75) : 15
x = -5
Vậy x= -5
b,-5x+8=-27
-5x = -27 - 8
-5x= -35
x =-35 : -5
x = 7
Vậy x = 7
c,3.(17 + x ) = - 42
17 + x = - 42 : 3
17 + x = -14
x = - 14 - 17
x = -31
Vậy x = - 31
d,-10 -( 2x -16) = 0
2x - 16 = 10-0
2x - 16 = 10
2x = 10 +16
2x = 26
x = 26 : 2
x = 13
Vậy x = 13
e,( mik ko bít làm)
f,( tự làm nghen bạn)
a) \(\left(x-\frac{1}{2}\right)^2=0\)
\(\Rightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
Vậy x = \(\frac{1}{2}\)
b) \(\left(x-2\right)^2=1\)
*\(x-2=1\Rightarrow x=3\)
*\(x-2=-1\Rightarrow x=1\)
Vậy x = 3; x = 1
c) \(\left(2x-1\right)^3=-8\)
\(\left(2x-1\right)^3=\left(-2\right)^3\)
\(2x-1=-2\)
\(2x=-1\)
\(\Rightarrow x=\frac{-1}{2}\)
Vậy x = \(\frac{-1}{2}\)
d) \(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)
\(\left(x+\frac{1}{2}\right)^2=\left(\frac{1}{4}\right)^2\)
\(x+\frac{1}{2}=\frac{1}{4}\)
\(x=\frac{1}{4}-\frac{1}{2}\)
\(\Rightarrow x=\frac{-1}{4}\)
Vậy x = \(\frac{-1}{4}\)
\(\left(x-\frac{1}{2}\right)^2=0\)
\(x-\frac{1}{2}=0\)
\(x=\frac{1}{2}\)
\(\left(2x-1\right)^3=-8\)
\(\left(2x-1\right)^3=\left(-2\right)^3\)
\(2x-1=-2\)
\(2x=-2+1\)
\(2x=-1\)
\(x=-\frac{1}{2}\)
\(\left(x-2\right)^2=1\)
\(\left(x-2\right)^2=\left(\pm1\right)^2\)
\(\begin{cases}x-2=1\\x-2=-1\end{cases}\)
\(\begin{cases}x=1+2\\x=-1+2\end{cases}\)
\(\begin{cases}x=3\\x=1\end{cases}\)
\(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)
\(\left(x+\frac{1}{2}\right)^2=\left(\pm\frac{1}{4}\right)^2\)
\(\begin{cases}x+\frac{1}{2}=\frac{1}{4}\\x+\frac{1}{2}=-\frac{1}{4}\end{cases}\)
\(\begin{cases}x=\frac{1}{4}-\frac{1}{2}\\x=-\frac{1}{4}-\frac{1}{2}\end{cases}\)
\(\begin{cases}x=-\frac{1}{4}\\x=-\frac{3}{4}\end{cases}\)