chứng minh rằng nếu n là số nguyên lẻ thì A= n3-3n2-n+21 chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Đề bài sai, ví dụ \(n=1\) lẻ nhưng \(1^2+4.1+8=13\) ko chia hết cho 8
b.
n lẻ \(\Rightarrow n=2k+1\)
\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6
\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48
\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\) (vì là 3 số nguyên lt)
\(n^3+3n^2+2n-n\left(n^2+3n+2\right)\)
\(=n\left[n\left(n+1\right)+2\left(n+1\right)\right]=n\left(n+1\right)\left(n+2\right)\)
Là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3
\(\Rightarrow n^3+3n^2+2n=n\left(n+1\right)\left(n+2\right)⋮2.3=6\forall n\in Z\)
Cách 1: Quy nạp
Đặt An = n3 + 3n2 + 5n
+ Ta có: với n = 1
A1 = 1 + 3 + 5 = 9 chia hết 3
+ giả sử với n = k ≥ 1 ta có:
Ak = (k3 + 3k2 + 5k) chia hết 3 (giả thiết quy nạp)
Ta chứng minh Ak + 1 chia hết 3
Thật vậy, ta có:
Ak + 1 = (k + 1)3 + 3(k + 1)2 + 5(k + 1)
= k3 + 3k2 + 3k + 1 + 3k2 + 6k + 3 + 5k + 5
= (k3 + 3k2 + 5k) + 3k2 + 9k + 9
Theo giả thiết quy nạp: k3 + 3k2 + 5k ⋮ 3
Mà 3k2 + 9k + 9 = 3.(k2 + 3k + 3) ⋮ 3
⇒ Ak + 1 ⋮ 3.
Cách 2: Chứng minh trực tiếp.
Có: n3 + 3n2 + 5n
= n.(n2 + 3n + 5)
= n.(n2 + 3n + 2 + 3)
= n.(n2 + 3n + 2) + 3n
= n.(n + 1)(n + 2) + 3n.
Mà: n(n + 1)(n + 2) ⋮ 3 (tích của ba số tự nhiên liên tiếp)
3n ⋮ 3
⇒ n3 + 3n2 + 5n = n(n + 1)(n + 2) + 3n ⋮ 3.
Vậy n3 + 3n2 + 5n chia hết cho 3 với mọi ∀n ∈ N*
phân tích n^2+4n+8=(n+1)(n+3)
vì là số tự nhiên lẻ nên đặt n=2k+1(k thuộc N)
=>n^2+4n+8=(n+1)(n+3)=(2k+2)(2k+4)
=4.(k+1)(k+2)
(k+1)(k+2) là tích 2 số tự nhiên liên tiếp chia hết cho 2
=>4.(k+1)(k+2)\(⋮\)8
A = n3 – n (có nhân tử chung n)
= n(n2 – 1) (Xuất hiện HĐT (3))
= n(n – 1)(n + 1)
n – 1; n và n + 1 là ba số tự nhiên liên tiếp nên
+ Trong đó có ít nhất một số chẵn ⇒ (n – 1).n.(n + 1) ⋮ 2
+ Trong đó có ít nhất một số chia hết cho 3 ⇒ (n – 1).n.(n + 1) ⋮ 3
Vậy A ⋮ 2 và A ⋮ 3 nên A ⋮ 6.
n3 - 3n2 - n + 21
= n(n2 - 1) - 3(n2 - 7)
= n(n - 1)(n + 1) - 3(n2 - 7)
n lẻ => n2 lẻ => n2 + 7 chẵn => n2 + 7 chia hết cho 2
=> - 3(n2 - 7) chia hết cho 6 (chia hết cho 2 và 3)
mà n(n - 1)(n + 1) chia hết cho 6 (tích 3 số nguyên liên tiếp)
Vậy n3 - 3n2 - n + 21 chia hết cho 6 vs mọi n là số nguyên lẻ (đpcm)