K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2016

x2 + y2 = 0

mà x2 lớn hơn hoặc bằng 0

      y2 lớn hơn hoặc bằng 0

=> x2 + y2 = 0

<=> x2 = y2 = 0

<=> x = y = 0

14 tháng 9 2016

dug ko do

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

Đề bài yêu cầu gì vậy em.

NV
26 tháng 3 2021

\(y'=-3x^2-6mx+6m=3\left(-x^2-2mx+2m\right)\)

Đặt \(f\left(x\right)=-x^2-2mx+2m\)

a. \(y'=0\) có 2 nghiệm \(x_1\le x_2< 1\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2+2m\ge0\\-f\left(1\right)=1>0\\\dfrac{x_1+x_2}{2}=-2m< 1\end{matrix}\right.\) \(\Rightarrow m\le-2\)

b. \(y'=0\) có 2 nghiệm cùng dấu

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2+2m\ge0\\x_1x_2=-2m>0\\\end{matrix}\right.\) \(\Rightarrow m\le-2\)

c. \(\Delta'=m^2+2m>0\Rightarrow\left\{{}\begin{matrix}m>0\\m< -2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1-x_2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2m+1}{2}\\x_2=\dfrac{-2m-1}{2}\end{matrix}\right.\)

\(x_1x_2=-2m\Rightarrow\left(\dfrac{-2m+1}{2}\right)\left(\dfrac{-2m-1}{2}\right)=-2m\)

\(\Leftrightarrow4m^2-1=-8m\Rightarrow4m^2+8m-1=0\Rightarrow...\)

NV
26 tháng 3 2021

d.

\(y'< 0\) ;\(\forall x\in R\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-1< 0\\\Delta'=m^2+2m< 0\end{matrix}\right.\)

\(\Leftrightarrow-2< m< 0\)

e.

\(y'< 0\) ; \(\forall x< 0\)

\(\Leftrightarrow-x^2-2mx+2m< 0\) ;\(\forall x< 0\)

TH1: \(\Delta'=m^2+2m< 0\Leftrightarrow-2< m< 0\)

TH2: \(\left\{{}\begin{matrix}\Delta'\ge0\\0< x_1\le x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2+2m\ge0\\x_1+x_2=-2m>0\\x_1x_2=-2m>0\end{matrix}\right.\) \(\Rightarrow m\le-2\)

12 tháng 5 2021

a) Giả sử `(x+1)^2 >= 4x` là đúng.

Có: `(x+1)^2 >=4x <=> x^2+2x+1>=4x`

`<=>x^2+1>=2x`

`<=>x^2-2x+1>=0`

`<=> (x-1)^2>=0 forall x`.

Vậy điều giả sử là đúng.

b) `x^2+y^2+2 >=2(x+y)`

`<=> (x^2-2x+1)+(y^2-2y+1) >=0`

`<=>(x-1)^2+(y-1)^2>=0 forall x,y`

c) `(1/x+1/y)(x+y)>=4`

`<=> (x+y)/(xy) (x+y) >=4`

`<=> (x+y)^2 >= 4xy`

`<=> x^2+2xy+y^2>=4xy`

`<=> (x-y)^2>=0 forall x,y > 0`

d) `x/y+y/x>=2`

`<=> (x^2+y^2)/(xy) >=2`

`<=> x^2+y^2 >=2xy`

`<=> (x-y)^2>=0 \forall x,y>0`.

12 tháng 5 2021

a) Xét hiệu \(\left(x+1\right)^2-4x\) = \(x^2-2x+1=\left(x-1\right)^2\ge0\)

=> \(\left(x+1\right)^2-\text{4x}\) \(\ge\) 0

=> \(\left(x+1\right)^2\ge\text{4x}\) (điều phải chứng minh)

b) xét hiệu \(x^2+y^2+2-2\left(x+y\right)\) = \(\left(x-1\right)^2+\left(y-1\right)^2\ge0\)

=> \(x^2+y^2+2-2\left(x+y\right)\ge0\)

=> \(x^2+y^2+2\ge2\left(x+y\right)\) (điều phải chứng minh)

c) Xét hiệu \(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(x+y\right)-4\) = \((\dfrac{x+y}{xy})\left(x+y\right)-4=\dfrac{\left(x+y\right)^2-4xy}{xy}=\dfrac{\left(x-y\right)^2}{xy}\) \(\ge0\)​​​(vì x>0,y>0)

=>\(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(x+y\right)\ge4\) (điều phải chứng minh)

d) Áp dụng bất đẳng thức Cau-Chy cho các số x>0;y>0 ta có

\(\dfrac{x}{y}+\dfrac{y}{x}\ge2.\left(\dfrac{xy}{yx}\right)=2\)

=> \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\) (điều phải chứng minh)

Mình làm hơi tắt mong bạn thông cảm nhé

Chúc bạn học tốt