K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2019

b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)

\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)

\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)

\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)

\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)

\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)

20 tháng 3 2019

caau a) binh phuong len ra no x=y tuong tu

24 tháng 6 2019

1,\(\left\{{}\begin{matrix}x=y^2-1\\\sqrt{y^2+3}+y^2-1=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y^2-1\\\sqrt{y^2+3}+y^2+3-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y^2-1\\\left(\sqrt{y^2+3}-2\right)\left(\sqrt{y^2+3}+3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y^2-1=0\\y^2=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\pm1\end{matrix}\right.\)

24 tháng 2 2020

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Leftrightarrow\left(x+y\right)^2+7\left(x+y\right)+10=-y^2\)

\(\Leftrightarrow\left(x+y+2\right)\left(x+y+5\right)=-y^2\)

Dễ thấy \(-y^2\le0\Rightarrow\left(x+y+2\right)\left(x+y+5\right)\le0\)

\(\Leftrightarrow-5\le x+y\le-2\)

\(\Leftrightarrow-4\le x+y+1\le-1\)

Vậy....

NV
18 tháng 10 2020

Bạn tham khảo:

Câu hỏi của Lê Ngọc Cương - Toán lớp 9 | Học trực tuyến

6 tháng 4 2017

Ta có : \(x^2+2y^2+2xy+y+1\)

\(=\left(x^2+2xy+y^2\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}\)

\(=\left(x+y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x,y\)

AH
Akai Haruma
Giáo viên
7 tháng 10 2020

Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix} x^2+y^2-2xy+(x^2y^2-1)=0\\ (x-y)+(x^2y-xy^2)+(xy-1)=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} (x-y)^2+(xy-1)(xy+1)=0\\ (x-y)(xy+1)+(xy-1)=0(*)\end{matrix}\right.\)

\(\Rightarrow (x-y)^2-(x-y)(xy+1)^2=0\)

\(\Rightarrow \left[\begin{matrix} x-y=0\\ x-y=(xy+1)^2\end{matrix}\right.\)

Nếu $x-y=0\Leftrightarrow x=y$. Thay vào PT ban đầu:

$2x^2+x^4=1+2x^2$

$\Leftrightarrow x^4=1\Rightarrow x=\pm 1\Rightarrow y=\pm 1$ (tương ứng)

Nếu $x-y=(xy+1)^2$. Thay vào $(*)$ có:

$(xy+1)^3+(xy-1)=0$. Đặt $xy+1=a$ thì pt trở thành:

$a^3+a-2=0$

$\Leftrightarrow (a-1)(a^2+a+2)=0$. Dễ thấy $a^2+a+2>0$ nên $a-1=0$

$\Leftrightarrow xy+1-1=0\Leftrightarrow xy=0$

$\Rightarrow x=0$ hoặc $y=0$

Nếu $x=0$ thì dễ thấy $y=-1$

Nếu $y=0$ thì dễ thấy $x=1$

Vậy...........

NV
3 tháng 3 2021

c. ĐKXĐ: ...

\(x^2+y^2+2xy-2xy+\dfrac{2xy}{x+y}-1=0\)

\(\Leftrightarrow\left(x+y\right)^2-1-2xy\left(1-\dfrac{1}{x+y}\right)=0\)

\(\Leftrightarrow\left(x+y-1\right)\left(x+y+1\right)-\dfrac{2xy\left(x+y-1\right)}{x+y}=0\)

\(\Leftrightarrow\left(x+y-1\right)\left(x+y+1-\dfrac{2xy}{x+y}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=1\\x^2+y^2+x+y=0\left(vô-nghiệm\right)\end{matrix}\right.\)

Thế \(y=1-x\) xuống pt dưới:

\(\sqrt{x+1-x}=x^2-\left(1-x\right)\)

\(\Leftrightarrow x^2+x-2=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=0\\x=-2\Rightarrow y=3\end{matrix}\right.\)

NV
3 tháng 3 2021

d.

ĐKXĐ: \(x>-2;y>1;x+y>0\)

\(\left\{{}\begin{matrix}\sqrt{\dfrac{x+y}{x+2}}+\sqrt{\dfrac{x+y}{y-1}}=2\\2\left(x+y\right)^2=\left(x+2\right)^2+\left(y-1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{x+y}{x+2}}+\sqrt{\dfrac{x+y}{y-1}}=2\\\left(\dfrac{x+2}{x+y}\right)^2+\left(\dfrac{y-1}{x+y}\right)^2=2\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}\sqrt{\dfrac{x+y}{x+2}}=a>0\\\sqrt{\dfrac{x+y}{y-1}}=b>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=2\\\dfrac{1}{a^4}+\dfrac{1}{b^4}=2\end{matrix}\right.\)

Ta có: \(\dfrac{1}{a^4}+\dfrac{1}{b^4}\ge\dfrac{1}{8}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^4\ge\dfrac{1}{8}\left(\dfrac{4}{a+b}\right)^4=\dfrac{1}{8}.\left(\dfrac{4}{2}\right)^4=2\)

Dấu "=" xảy ra khi  và chỉ khi \(a=b=1\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x+y}{x+2}=1\\\dfrac{x+y}{y-1}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)