Tính :
a) \(\left(\frac{1}{3}\right)^5.3^5\)
b) (1,5)3 . 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(A=\frac{2^5.7+2^5}{2^5.3-2^5}\)= \(\frac{2^5.8}{2^5.2}\)= 4
Vậy A = 4
Câu 2:
\(B=2^3.5^3-3.\left\{400-\left[673-2^3.\left(7^8:7^6+7^0\right)\right]\right\}\)
\(B=8.125-3.\left\{400-\left[673-8.\left(7^2+1\right)\right]\right\}\)
\(B=1000-3.\left\{400-\left[673-8.\left(49+1\right)\right]\right\}\)
\(B=1000-3.\left\{400-\left[673-8.50\right]\right\}\)
\(B=1000-3.\left\{400-\left[673-400\right]\right\}\)
\(B=1000-3.\left\{400-273\right\}\)
\(B=1000-3.127\)
\(B=1000-381\)
\(B=619\)
Vậy B = 619
B = \(\frac{\frac{1}{2^{10}}.5-\frac{1}{\left(2^2\right)^5}.3}{\frac{1}{2^{10}}.\frac{1}{3}-\frac{1}{2^{11}}}=\frac{\frac{1}{2^{10}}.\left(5-3\right)}{\frac{1}{2^{10}}.\left(\frac{1}{3}-\frac{1}{2}\right)}=\frac{2}{\left(-\frac{1}{6}\right)}=2:\left(-\frac{1}{6}\right)=-12\)
a,\(\frac{-2}{5}+\frac{7}{21}=\frac{-2}{5}+\frac{1}{3}=\frac{-6}{15}+\frac{5}{15}=\frac{-1}{15}\)
b,\(\left(\frac{1}{3}\right)^5.3^5-2020^0=\left(\frac{1}{3}.3\right)^5-1=1^5-1=1-1=0\)
c,\(\left(-\frac{1}{4}\right).6\frac{2}{11}+3\frac{9}{11}.\left(-\frac{1}{4}\right)\)
\(=\left(-\frac{1}{4}\right).\left(6\frac{2}{11}+3\frac{9}{11}\right)=\left(-\frac{1}{4}\right).\left[\left(6+3\right)+\left(\frac{2}{11}+\frac{9}{11}\right)\right]\)
\(=\left(-\frac{1}{4}\right).\left[9+1\right]=\frac{-1}{4}.10=\frac{\left(-1\right).10}{4}=\frac{\left(-1\right).5}{2}=\frac{-5}{2}\)
1) tự làm (thực hiện từ dưới lên)
2) B = \(\frac{\left(\frac{1}{2}\right)^{10}.5-\left(\frac{1}{4}\right)^5.3}{\frac{\frac{1}{1024}.1}{3}-\left(\frac{1}{2}\right)^{11}}\)
= \(\frac{\left(\frac{1}{2}\right)^{10}.5-\left(\frac{1}{2}\right)^{10}.3}{\left(\frac{1}{2}\right)^{10}.\frac{1}{3}-\left(\frac{1}{2}\right)^{10}.\frac{1}{2}}\)
= \(\frac{\left(\frac{1}{2}\right)^{10}.\left(5-3\right)}{\left(\frac{1}{2}\right)^{10}.\left(\frac{1}{3}-\frac{1}{2}\right)}\)
= \(\frac{2}{-\frac{1}{6}}\)= 2 . (-6) = -12
1) \(5+\frac{1}{1+\frac{1}{1+\frac{2}{1+\frac{3}{4}}}}=5+\frac{15}{7}=\frac{5}{1}+\frac{15}{7}=\frac{50}{7}\)
\(\Rightarrow B=\frac{\left(\frac{1}{2}\right)^{10}.5-\left(\frac{1}{2}\right)^{10}.3}{\left(\frac{1}{2}\right)^{10}.\frac{1}{3}-\left(\frac{1}{2}\right)^{10}.\left(\frac{1}{2}\right)}\) \(\Rightarrow B=\frac{\left(\frac{1}{2}\right)^{10}.\left(5-3\right)}{\left(\frac{1}{2}\right)^{10}.\left(\frac{1}{3}-\frac{1}{2}\right)}\) \(\Rightarrow B=\frac{\left(\frac{1}{2}\right)^{10}.2}{\left(\frac{1}{2}\right)^{10}.\left(-\frac{1}{6}\right)}=-12\)
Câu a) số lớn lắm
b) \(3^{-3}\cdot3^5\cdot3^x=3^8\)
=> \(\frac{1}{27}\cdot3^5\cdot3^x=3^8\)
=> \(\frac{1}{27}\cdot3^x=3^3\)
=> \(3^x=3^3:\frac{1}{27}=3^3:\left(\frac{1}{3}\right)^3=3^3:\frac{1^3}{3^3}=3^3\cdot3^3=3^6\)
=> x = 6
b) \(\left(7x+2\right)^{-1}=3^{-2}\)
=> \(\frac{1}{7x+2}=\frac{1}{9}\)
=> 7x + 2 = 9
=> 7x = 7
=> x = 1
Bài 2:
a) \(3^4\cdot\frac{1}{729}\cdot81^3\cdot\frac{1}{9^2}\)
\(=3^4\cdot\left(\frac{1}{3}\right)^6\cdot\left(3^4\right)^3\cdot\left(\frac{1}{3}\right)^4\)
\(=3^4\cdot\left(\frac{1}{3}\right)^6\cdot3^{12}\cdot\left(\frac{1}{3}\right)^4=3^{16}\cdot\left(\frac{1}{3}\right)^{10}=\frac{3^{16}}{3^{10}}=3^6\)
b) \(\left(8\cdot2^5\right):\left(2^4\cdot\frac{1}{32}\right)=\left(2^3\cdot2^5\right):\left(2^4\cdot\left(\frac{1}{2}\right)^5\right)\)
\(=2^8:\left(2^4\cdot\frac{1^5}{2^5}\right)=2^8:\left(\frac{2^4}{2^5}\right)=2^8:2^{-1}=512\)
c) \(12^8\cdot9^{12}=\left(2^2\cdot3\right)^8\cdot\left(3^2\right)^{12}=2^{16}\cdot3^8\cdot3^{24}=2^{16}\cdot3^{32}\)
d) Tương tự
a) \(\frac{3}{4}+\frac{1}{4}.x=\frac{1}{2}+\frac{1}{2}x\)
\(\Rightarrow3.\frac{1}{4}+\frac{1}{4}.x=\frac{1}{2}.\left(x+1\right)\)
\(\Rightarrow\frac{1}{4}.\left(x+3\right)=\frac{1}{2}.\left(x+1\right)\)
\(\Rightarrow\frac{x+1}{x+3}=\frac{1}{4}:\frac{1}{2}=\frac{1}{2}\)\(\Rightarrow\left(x+1\right).2=x+3\Rightarrow2x+2=x+3\)
\(\Rightarrow2x-x=3-2\Rightarrow x=1\)
vay x=1
a) \(\left(\frac{1}{3}\right)^5\cdot3^5=\left(\frac{1}{3}\cdot3\right)^5=1^5=1\)
b) \(\left(\frac{3}{2}\right)^3\cdot2^3=\left(\frac{3}{2}\cdot2\right)^3=3^3=27\)
a)
\(\left(\frac{1}{3}\right)^5.3^5=\left(\frac{1}{3}.3\right)^5=1^5=1\)
b)
\(\left(1,5\right)^3.8^3=\left(1,5\right)^3.2^3=\left[\left(1,5\right).2\right]^3=3^3=27\)