Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho số m dương . Chứng minh
a, Nếu m > 1 thì \(\sqrt{m}\) > 1
b, Nếu m < 1 thì \(\sqrt{m}\) < 1
a/ \(m>1\Leftrightarrow m-1>0\Leftrightarrow\left(\sqrt{m}-1\right)\left(\sqrt{m}+1\right)>0\)
mà \(\sqrt{m}+1>0\) \(\Rightarrow\sqrt{m}-1>0\Leftrightarrow\sqrt{m}>1\)
b/ tương tự
a) Khi m > 1 thì m > 12 => \(\sqrt{m}>1\) (căn 2 vế của bất đẳng thức)
b) Tương tự : Khi m < 1 thì m < 12 => \(\sqrt{m}< 1\)
a/ \(m>1\Leftrightarrow m-1>0\Leftrightarrow\left(\sqrt{m}-1\right)\left(\sqrt{m}+1\right)>0\)
mà \(\sqrt{m}+1>0\) \(\Rightarrow\sqrt{m}-1>0\Leftrightarrow\sqrt{m}>1\)
b/ tương tự
a) Khi m > 1 thì m > 12 => \(\sqrt{m}>1\) (căn 2 vế của bất đẳng thức)
b) Tương tự : Khi m < 1 thì m < 12 => \(\sqrt{m}< 1\)