Cho a,b \(\in\) N*
a > 2 b>2
Hãy chứng minh a+b < a.b
Làm theo cách tổng quát
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong 4 số a,b,c,d sẽ có ít nhất 2 số có cùng số dư khi chia cho 3 nên tích đó sẽ chia hết cho 3.
Trong 4 số a,b,c,d
Nếu có 2 số có cùng số dư khi chia cho 4 thì tích đó chia hết cho 4
Nếu không có cùng số dư thì số dư của 4 số đó chia cho 4 lần lược sẽ là 0,1,2,3. Vậy trong 4 số này có 2 số chẵn, 2 số lẻ. Mà hiệu 2 số chẵn và lẻ đều là số chẵn nên tích đó phải có ít nhât 2 số chẵn hay tích đó chia hết cho 4
Vì 3 và 4 nguyên tố cùng nhau nên tích đã cho chia hết cho 12
Vì a > 2 và b > 2 nên ta đặt a = 2 + m; b = 2 + n ( m,n \(\in\) N* )
a + b = ( 2 + m ) + ( 2 + n ) = 4 + ( m + n ) ( 1 )
a . b = ( 2 + m ) . ( 2 + n ) = ( 2 + m ) . 2 + ( 2 + m ) . n = 4 + 2m + 2n + mn = 4 + 2 . ( m + n ) + m . n ( 2 )
Do m,n \(\in\) N* nên 2 . ( m + n ) > m + n và m .n > 0
Từ ( 1 ) và ( 2 ) suy ra a + b < a . b
a vì a+2>5 =>a+2+(-2)>5+(-2)=>a+2>3
b vì a>3 => a+2>3+2 =>a+2>5
c vì m>n =>m-n>n-n=>m-n>0
đ vì m-n=0 =>m-n+n>0+n=>m>n
e vì m<n nên m+(-4)<n+(-4) =>m-4<n-4 (1)
vì -4>-5 => m-4>m-5 (2)
từ (1) và (2) =>m-5<n-4
Số nhỏ nhất lớn hơn 2 là : 3
Tích của 3 x 3 là : 3 x 3 = 9
Tổng của 3 + 3 là : 3 + 3 = 6
Vậy, a + b bao giờ cũng nhỏ hơn a x b
\(a>2\Rightarrow a-2>0\)
\(b>2\Rightarrow b-2>0\)
\(\Rightarrow\left(a-2\right)\left(b-2\right)>0\Leftrightarrow ab-2a-2b+4>0\)
\(\Leftrightarrow ab+4>2\left(a+b\right)\)
Ta có : \(a.b>2.2=4\Rightarrow ab+ab>ab+4>2\left(a+b\right)\)
\(\Rightarrow2ab>2\left(a+b\right)\)
\(\Rightarrow ab>a+b\)
+ Nếu a = b thì a + b = a + a
=> a + b = 2.a < a.b (vì b > 2)
+ Nếu a < b thì a + b < b + b
=> a + b < 2.b < a.b (vì a > 2)
+ Nếu a > b thì a + b < a + a
=> a + b < 2.a < a.b (vì b > 2)
Vậy với a,b thuộc N*; a > 2; b > 2 thì a + b < a.b (đpcm)
Cậu có zing hay olm ko àm teen quen quen thế nhỉ?