Tìm 2 số tự nhiên có tổng là 133 . Biết rằng nếu xóa bỏ chữ số hàng đơn vị của số thứ nhất thì ra số thứ 2 .
Ai giúp tớ cái đáp án là 121 và 12 nhưng mik ko bít giải a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu số thứ tư là số có một chữ số thì số thứ ba có hai chữ số, số thứ hai có ba chữ số và số thứ tư có bốn chữ số.
Vì tổng 4 số tự nhiên bằng 2003 nên số thứ nhất chỉ có thể là số có 4 chữ số.
Gọi số thứ nhất là abcd. Theo bài ra ta có:
abcd + abc + ab + a = 2003 nên a = 1
=> 1000 + bcd + 100 + bc + 10 + b + 1 = 2003
=> bcd + bc + b = 892 nên b = 8
=> 800 + cd + 80 + c + 8 = 892
=> cd + c = 4
=> c = 0 và d = 4
Số phải tìm là: 1804; 180; 18; 1 .
Theo phân tích cấu tạo số ta có : aaaa + bbb + cc + d = 2003 (*)
Từ phép tính (*) ta có a < 2, nên a = 1. Thay a = 1 vào (*) ta được:
1111 + bbb + cc + d = 2003.
bbb + cc + d = 2003 - 1111
bbb + cc + d = 892 (**)
b > 7 vì nếu b nhỏ hơn hoặc bằng 7 thì bbb + cc + d nhỏ hơn 892 ; b < 9 vì nếu b = 9 thì bbb = 999 > 892. Suy ra b chỉ có thể bằng 8.
Thay b = 8 vào (**) ta được:
888 + cc + d = 892
cc + d = 892 - 888
cc + d = 4
Từ đây suy ra c chỉ có thể bằng 0 và d = 4.
Vậy số thứ nhất là 1804, số thứ hai là 180, số thứ ba là 18 và số thứ tư là 1.
Thử lại: 1804 + 180 + 18 + 1 = 2003
tren vndoc
Gọi 4 số tự nhiên cần tìm lần lượt là a, b, c, d. Theo đề bài, ta có các điều kiện sau: 1. a + b + c + d = 2003 2. Nếu xóa bỏ chữ số hàng đơn vị của số thứ nhất ta được số thứ hai: a // 10 = b 3. Nếu xóa bỏ chữ số hàng đơn vị của số thứ hai ta được số thứ ba: b // 10 = c 4. Nếu xóa bỏ chữ số hàng đơn vị của số thứ ba ta được số thứ tư: c // 10 = d Ta sẽ giải hệ phương trình này bằng cách thử từng giá trị của a và d. Với a = 1, d = 2, ta có: 1 + b + c + 2 = 2003 => b + c = 2000 Vì b và c là số tự nhiên, nên ta thử các giá trị của b và c từ 1 đến 1999. Tuy nhiên, không có cặp giá trị nào thỏa mãn điều kiện b + c = 2000. Với a = 2, d = 3, ta có: 2 + b + c + 3 = 2003 => b + c = 1998 Tương tự, ta thử các giá trị của b và c từ 1 đến 1997. Tuy nhiên, cũng không có cặp giá trị nào thỏa mãn điều kiện b + c = 1998. Tiếp tục thử các giá trị khác cho a và d, ta sẽ tìm được cặp giá trị thỏa mãn điều kiện.
Gọi số thứ nhất là
hai là
ba là
bốn là
Ta có
vì nếu thì
Ta có
vì nếu thì
Ta có
vì thì
Từ đó suy ra
Vậy 4 số đó là
Gọi số thứ nhất là
hai là
ba là
bốn là
Ta có
vì nếu thì
Ta có
vì nếu thì
Ta có
vì thì
Từ đó suy ra
Vậy 4 số đó là
Gọi số tự nhiên lớn nhất cần tìm là abcd. Ta có :
abcd + abc + ab + a = 2013
1111 x a + 111 x b + 11 x c + d = 2013
Vì a khác 0 và < 2 (Vì nếu a = 2 thì 1111 x 2 = 2222 > 2013) => a = 1
Vậy 111 x b + 11 x c + d = 2013 - 1111
111 x b + 11 x c + d = 902
11 x c + d lớn nhất = 108 => 111 x b nhỏ nhất = 902 - 108 = 794 => b nhỏ nhất = 8)
Mặt khác 11 x c + d nhỏ nhất = 0 => 111 x b lớn nhất = 902. Vậy b lớn nhất = 8)
Vậy b = 8
=> 11 x c + d = 902 - 111 x 8
=> 11 x c + d = 14.
=> c = 1 và d = 3
Ta có 4 số lần lượt là : 1813 ; 181 ; 18 và 1
Vì tổng 4 số tự nhiên bằng 2003 nên số thứ nhất chỉ có thể là số có 4 chữ số.
Gọi số thứ nhất là abcd. Theo bài ra ta có:
abcd + abc + ab + a = 2003 nên a = 1
=> 1000 + bcd + 100 + bc + 10 + b + 1 = 2003
=> bcd + bc + b = 892 nên b = 8
=> 800 + cd + 80 + c + 8 = 892
=> cd + c = 4
=> c = 0 và d = 4
Số phải tìm là: 1804; 180; 18 , 1
Đúng thì bảo mk nhé Phương Uyên "xinh đẹp".
Bài giải:
số thứ nhất không thể nhiều hơn 4 vì tổng 4 số băng 2003. Nếu số thứ nhất có ít hơn 4 chữ số thì sẽ không tồn tại số thứ tư, vậy số thứ nhất phải có 4 chữ số.
Gọi số thứ nhất là abcd ( a > 0; abcd < 10 ). số thứ 2, số thứ 3, số thứ 4 lần lượt sẽ là: abc ; ab ; a. Theo bài ra ta có phép tính:
abcd + abc + ab + c = 2003
theo phân tích cấu tạo số ta có:
aaaa + bbb + cc + d = 2003 (*)
Từ phép tính (*) ta có : a < 2 nên a = 1. thay a = 1 vào (*) ta được:
1111 + bbb + cc + d = 2003
bbb + cc + d = 2003 - 1111
bbb + cc + d = 892 ( ** )
b > 7 vì nếu b nhỏ hơn hoặc bằng 7 thì bbb + cc + d nhỏ hơn 892; b < 9 vì nếu b = 9 thì bbb = 999 > 892. Suy ra b chỉ có thể bằng 8.
thay b = 8 vào ( ** ) ta được:
888 + cc + d = 892
cc + d = 892 - 888
cc + d = 4
từ đây suy ra c chỉ có thể = 0 và d = 4.
vậy số thứ nhất là1804, số thứ 2 là 180, số thứ 3 là 18 và số thứ 4 là 1.
thử lại: 1804 + 180 + 18 + 1 = 2003 ( đúng )
Các số đó là : 1804 , 180 , 18 , 1
Mình thử rồi , kết quả đúng , k mình nha mình k lai
gọi số thứ nhất là abc, số thứ 2 là ab, ta có
abc + ab = 133
ab.10+c +ab = 133
ab.(10+1)+c = 133
ab.11+c=133
=> 133 chia cho 11 bằng ab dư c=> ab= 12, c = 1 ( 12.11+1 = 133 )
nếu ab= 11 hoặc bé hơn => c = 12 hoặc lớn hơn ( loại vì số dư không thể lớn hơn số chia, tức c không thể lớn hơn 11 )
=> abc= 121; ab= 12
P/s : Tick dùm mình nha bạn
oh cậu làm giống y mik rồi , very good . Chúc học tốt