giả sử x= \(\frac{a}{m}\) , y= \(\frac{b}{m}\) (a,b,m\(\in\) Z, m >0) và x<y. hảy chứng tỏ rằng nếu chọn Z = \(\frac{a+b}{2m}\) thì ta có x< z< y
giúp mình vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Trần Khởi My - Toán lớp 7 - Học toán với OnlineMath
Tham khảo nhé
biết đường mà cảm ơn đi, hahaha:
theo đề bài x và y đã cho suy ra: a=x.m và b=y.m. Nên ta thay vào z sẽ có a+b/2m = x.m+y.m=2m
x=a/m suy ra x cũng bằng 2a/2m nên bằng 2xm/2m...Mà x.m+y.m (dòng trên) lớn hơn 2xm do y>x nên ta được z>x
Tương tự với y
Vậy x < z < y (đpcm) haha ♥
Ta có : x < y mà \(x=\frac{a}{m}\)và \(y=\frac{b}{m}\)
\(\Rightarrow a< b\)
a<b \(\Rightarrow a+a< b+a\)
\(\text{Hay}\)\(2a< b+a\)
\(\Rightarrow\frac{a+b}{2m}>\frac{2a}{2m}\)
\(\Rightarrow z>x\)( 1)
a < b \(\Rightarrow a+b< b+b\)
Hay \(a+b< 2b\)
\(\Rightarrow\frac{a+b}{2m}< \frac{2b}{2m}\)
\(\Rightarrow z< y\)(2)
Từ (1) và (2) suy ra : x < z < y (đpcm)
\(x< y\Rightarrow\frac{a}{m}< \frac{b}{m}\Rightarrow a< b\)
\(\Rightarrow\frac{a}{2m}+\frac{a}{2m}< \frac{a}{2m}+\frac{b}{2m}< \frac{b}{2m}+\frac{b}{2m}\)
\(\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)
\(\Rightarrow\frac{a}{m}< \frac{a+b}{2m}< \frac{b}{m}\)
\(\Rightarrow x< z< y\)
ta có: x < y hay a/m < b/m => a < b
so sánh x,y,z ta chuyển chúng cùng mẫu: 2m
x = a/m = 2a / 2m và y = b/m = 2b / 2m và Z = (a + b) / 2m
* Mà a < b :
=> a + a < b + a
hay 2a < b + a
=> x < Z (1)
* mà a < b:
=> a + b < b + b
hay a + b < 2b
=> Z < y (2)
từ (1) và (2) => nếu chọn Z = (a + b) / 2m thì ta có x < Z < y
Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y
Link nè bạn vào xem nhé:
http://olm.vn/hoi-dap/question/96218.html
Ta có: x < y, tức là: a/m < b/m
Suy ra: a/2m < b/2m
Suy ra: a/2m + a/2m < b/2m + a/2m suy ra 2a/2m < a+b/2m suy ra a/m < a+b/2m
Vậy x < z
Ta cũng có: x < y
suy ra a/2m + b/2m < b/2m + b/2m suy ra a+b/2m < 2b/2m suy ra a+b/2m < b/m
Vậy z<y