K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2015

A2 \(\le2\)

=> \(\sqrt{A^2}\le\sqrt{2}\)

=> | A | \(\le\sqrt{2}\)

=> A \(\le\sqrt{2}\)

11 tháng 9 2015

A= 1 + 2x - x2 = 2 - (x- 2x + 1) = 2 - (x -1)2 \(\le\) 2 với mọi x

=> A2 \(\le\) 2 => |A| \(\le\) \(\sqrt{A^2}=\left|A\right|\le\sqrt{2}\)

=> A \(\le\) \(\sqrt{2}\) 

Dấu "=" xảy ra khi x -1 = 0 <=> x = 1

vậy A lớn nhất bằng \(\sqrt{2}\) tại x = 1

 

26 tháng 10 2021

Áp dụng BĐT cosi:

\(A=\sqrt{\left(2x+1\right)\left(x+2\right)}+2\sqrt{x+3}-2x\\ A\le\dfrac{2x+1+x+2}{2}+\dfrac{4+x+3}{2}-2x\\ A\le\dfrac{3x+3}{2}+\dfrac{x+7}{2}-2x=\dfrac{3x+3+x+7-4x}{2}=5\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}2x+1=x+2\\4=x+3\end{matrix}\right.\Leftrightarrow x=1\)

NV
2 tháng 3 2021

\(P=\sqrt{\left(x+2\right)\left(2x+1\right)}+2\sqrt{x+3}-2x\)

\(P\le\dfrac{1}{2}\left(x+2+2x+1\right)+\dfrac{1}{2}\left(4+x+3\right)-2x=5\)

\(P_{max}=5\) khi \(x=1\)

12 tháng 12 2016

\(y=\sqrt{x^2-2x+1}-\sqrt{x^2+2x+1}\)

\(=\sqrt{\left(x-1\right)^2}-\sqrt{\left(x+1\right)^2}\)

\(=\left|x-1\right|-\left|x+1\right|\)

+)Xét \(x< -1\)\(\Rightarrow\begin{cases}x+1< 0\Rightarrow\left|x+1\right|=-\left(x+1\right)=-x-1\\x-1< 0\Rightarrow\left|x-1\right|=-\left(x-1\right)=-x+1\end{cases}\)

\(\Rightarrow y=\left(-x-1\right)-\left(-x+1\right)=2\)

+)Xét \(-1\le x< 1\)\(\Rightarrow\begin{cases}x\ge-1\Rightarrow x+1\ge0\Rightarrow\left|x+1\right|=x+1\\x< 1\Rightarrow x-1< 0\Rightarrow\left|x-1\right|=-\left(x-1\right)=-x+1\end{cases}\)

\(\Rightarrow y=\left(-x+1\right)-\left(x+1\right)=-2x\)

+)Xét \(x\ge1\)\(\Rightarrow\begin{cases}x-1\ge0\Rightarrow\left|x-1\right|=x-1\\x+1\ge0\Rightarrow\left|x+1\right|=x+1\end{cases}\)

\(\Rightarrow y=\left(x-1\right)-\left(x+1\right)=-2\)

Ta thấy:

  • Với \(x\ge1\) ta tìm được \(Min_y=-2\)
  • Với \(x< -1\) ta tìm được \(Max_y=2\)

 

 

 

6 tháng 11 2016

a) |2x-2|=|2x+3|

TH1: 2x-2=2x+3

=> 2x-2=2x-2+5 ( vô lý )

=> Không tồn tại x

TH2: 2x-2=-2x-3

=> 2x+2x+3=2

=> 4x=-1

=> x=-1/4

Vậy: x=-1/4

b) \(A=\frac{1}{\sqrt{x-2}+3}\)

Để A đạt giá trị lớn nhất thì \(\sqrt{x-2}+3\) phải đạt giá trị nhỏ nhất

Có: \(\sqrt{x-2}\ge0\Rightarrow\sqrt{x-2}+3\ge3\)

Dấu = xảy ra khi x=2

Vậy: \(Max_A=\frac{1}{3}\) tại x=2

c) Có: \(\frac{2x+1}{x-2}< 2\Rightarrow\frac{2x+1}{x-2}-2< 0\)

\(\Rightarrow\frac{2x+1}{x-2}-\frac{2\left(x-2\right)}{x-2}< 0\)

\(\Rightarrow\frac{2x+1-2x+4}{x-2}< 0\)

\(\Rightarrow\frac{5}{x-2}< 0\)

\(\Rightarrow x< 2\)

5 tháng 11 2016

a)

|2x-2| = |2x+3|

<=> \(\left[\begin{array}{nghiempt}2x-2=2x+3\\2x-2=-2x-3\end{array}\right.\)

<=> \(\left[\begin{array}{nghiempt}0x=5\left(vl\right)\\4x=-1\end{array}\right.\)

<=> x = \(-\frac{1}{4}\)

NM
23 tháng 8 2021

a . ta có : \(1\le1+\sqrt{2-x}\Rightarrow GTNN=1\)

\(-2\le\sqrt{x-3}-2\Rightarrow GTNN=-2\)

b. \(0\le\sqrt{4-x^2}\le2\)

\(\sqrt{2x^2-x+3}=\sqrt{2\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{23}{8}}=\sqrt{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\ge\frac{\sqrt{46}}{4}\)

vậy \(GTNN=\frac{\sqrt{46}}{4}\)

ta có : \(0\le-x^2+2x+5=-\left(x-1\right)^2+6\le6\)

\(\Rightarrow1-\sqrt{6}\le1-\sqrt{-x^2+2x+5}\le1\)Vậy \(\hept{\begin{cases}GTNN=1-\sqrt{6}\\GTLN=1\end{cases}}\)

18 tháng 11 2019

a) \(x\ge0\)đặt \(\sqrt{x}=a\ge0\)

\(A=\frac{2a}{a^2-a+1}\Leftrightarrow A.a^2+A-2a=0\Leftrightarrow A.a^2-\left(A+2\right)a+A=0\)

\(\Delta=\left(A+2\right)^2-4A^2=-3A^2+4A+4\ge0\Rightarrow A\le2\)

\(\Rightarrow A_{max}=2\) khi  \(x=1\)

b) 

\(x\ge0\)

\(B=-\left(x-2.\sqrt{x}.\frac{1}{2}+\frac{1}{4}\right)-\frac{7}{4}=-\left(\sqrt{x-\frac{1}{2}}\right)^2-\frac{7}{4}\le\frac{-7}{4}\)

\(\Rightarrow B_{max}=\frac{-7}{4}\) khi \(\sqrt{x=}\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)

c) \(x\ge0\)

\(C=-2+\sqrt{x}-1=-2\left(x-2.\sqrt{x}.\frac{1}{4}+\frac{1}{16}\right)-\frac{7}{8}\)

\(C=-2\left(\sqrt{x}-\frac{1}{4}\right)^2\frac{7}{8}\le\frac{-7}{8}\)

\(C_{max}=\frac{-7}{8}\)khi đó \(x=\frac{1}{16}\)