Tìm GTLN. gtnn của hàm số sau y=4sin3x- 3cosx+1.
Cảm ơn các bạn nhiều'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\sqrt{3}cosx-sinx=2\left(\dfrac{\sqrt{3}}{2}cosx-\dfrac{1}{2}sinx\right)=2cos\left(x+\dfrac{\pi}{6}\right)\)
Vì \(cos\left(x+\dfrac{\pi}{6}\right)\in\left[-1;1\right]\Rightarrow y=\sqrt{3}cosx-sinx\in\left[-2;2\right]\)
\(\Rightarrow y_{min}=-2\Leftrightarrow cos\left(x+\dfrac{\pi}{6}\right)=-1\Leftrightarrow x+\dfrac{\pi}{6}=\pi+k2\pi\Leftrightarrow x=\dfrac{5\pi}{6}+k2\pi\)
\(y_{max}=2\Leftrightarrow cos\left(x+\dfrac{\pi}{6}\right)=1\Leftrightarrow x+\dfrac{\pi}{6}=k2\pi\Leftrightarrow x=-\dfrac{\pi}{6}+k2\pi\)
`y=1/2 sinx +3cosx`
`-\sqrt( (1/2)^2+3^2) <= y <= \sqrt( (1/2)^2+3^2)`
`<=> -\sqrt37/2 <= y <= \sqrt37/2`
`=> y_(min) = -\sqrt37/2`
`y_(max) = \sqrt37/2`.
a.\(-1\le cosx\le1\Rightarrow-4\le y=3cosx-1\le2\)
b.-1 \(\le sinx\le1\)\(\Rightarrow3\le y=5+2sinx\le7\)
c.\(\sqrt{3-1}\le\sqrt{3+cos2x}\le\sqrt{3+1}\Rightarrow\sqrt{2}\le y\le2\)
d.\(y=\sqrt{5sinx-1}+2\le\sqrt{5.1-1}+2=4\)
\(y=\sqrt{5sinx-1}+2\ge2\) . " = " \(\Leftrightarrow sinx=\dfrac{1}{5}\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(\dfrac{1}{5}\right)+2k\pi\\x=\pi-arcsin\left(\dfrac{1}{5}\right)+2k\pi\end{matrix}\right.\) ( k thuộc Z )
\(y=4\left(1-sin^2x\right)+2sinx+2=-4sin^2x+2sinx+6\)
Đặt \(sinx=t\in\left[-1;1\right]\Rightarrow y=f\left(t\right)=-4t^2+2t+6\)
\(-\dfrac{b}{2a}=\dfrac{1}{4}\in\left[-1;1\right]\)
\(f\left(-1\right)=0\) ; \(f\left(\dfrac{1}{4}\right)=\dfrac{25}{4}\); \(f\left(1\right)=4\)
\(\Rightarrow y_{max}=\dfrac{25}{4}\) khi \(sinx=\dfrac{1}{4}\)
\(y_{min}=0\) khi \(sinx=-1\)
Ta có: \(y=4cos^2x+2sinx+2=4-4sin^2x+2sinx+2=-4sin^2x+2sinx+6=-\left(4sin^2x-2sinx+\dfrac{1}{16}-\dfrac{1}{16}-6\right)=-\left(2sin^2x-\dfrac{1}{4}\right)^2+\dfrac{97}{16}\)
Ta có: \(-\left(2sin^2x-\dfrac{1}{4}\right)^2\le0\Rightarrow y\le\dfrac{97}{16}\)
Vậy \(y_{max}=\dfrac{97}{16}\)
\(3x^2-6x+1\)
\(=3\left(x^2-2x+\frac{1}{3}\right)\)
\(=3\left(x-1\right)^2-\frac{2}{3}\)
vì \(3\left(x-2\right)^2\ge0\)nên \(3\left(x-1\right)^2-\frac{2}{3}\ge\frac{2}{3}\)
vậy GTNN của biểu thức =2/3
minh tống ơi chắc là sai đấy
Ta có:(3x-y)\(^2\)\(\ge\) 0 \(\forall\) x
|x+y|\(\ge\) 0 \(\forall\)i x,y
=>(3x-y)\(^2\)+|x+y|\(\ge\)0 \(\forall\) x,y
=>(3x-y)\(^2\)+|x+y|-3\(\ge\)-3 \(\forall\)x,y
Vậy GTNN của biểu thức B là -3
Dấu "=" xảy ra khi (3x-y)\(^2\)=|x+y|=0
Với (3x-y)\(^2\)=0=>3x-y=0=>3x=y=>x=y=0
Với |x+y|=0=>x+y=0=>x=x=0
Vậy biểu thức B đạt GTNN là -3 khi x=y=0
Bạn ghi lại đầu bài được không có phải thế này à
\(|x-1|.\left(6-|x-1|\right)\)