cho 2 điểm B , C cố định nằm trên đường tròn (O ; R) và điểm A thay đổi trên đường tròn đó . Hãy dùng phép đối xứng trục để chứng minh rằng trực tâm H của tam giác ABC nằm trên 1 đường tròn cố định .
Hướng dẫn : khi BC không phải là đường kính , gọi H' là giao điểm của đường thẳng AH với đường tròn (O ; R) . Chứng minh rằng H đối xứng với H' qua đường tròn BC .
- Kẻ đường kính BB’
.Nếu H là trực tâm của tam giác ABC thì AH=B’C. Do C,B’ cố định , cho nên B’C là một véc tơ cố định => AH = B'C
. Theo định nghĩa về phép tịnh tiến điểm A đã biến thành điểm H .
Nhưng A lại chạy trên (O;R) cho nên H chạy trên đường tròn (O’;R) là ảnh của (O;R) qua phép tịnh tiến dọc theo v = B'C
- Cách xác định đường tròn (O’;R) .
Từ O kẻ đường thẳng song song với B’C . Sau đó dựng véc tơ : OO' = B'C
Cuối cùng từ O’ quay đường tròn bán kính R từ tâm O’ ta được đường tròn cần tìm .
Ôi, Tui chưa kịp chép Microsoft Office