Cho các số dương x,y,z,t có tổng bằng 2. Tìm GTNN của \(B=\frac{\left(x+y+z\right)\left(x+y\right)}{xyzt}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(4A=\frac{\left(x+y+z+t\right)^2\left(x+y+z\right)\left(x+y\right)}{xyzt}\)
\(\ge\frac{4\left(x+y+z\right)t\left(x+y+z\right)\left(x+y\right)}{xyzt}\)
\(=\frac{4\left(x+y+z\right)^2\left(x+y\right)}{xyz}\ge\frac{16\left(x+y\right)z\left(x+y\right)}{xyz}\)
\(=\frac{16\left(x+y\right)^2}{xy}\ge\frac{64xy}{xy}=64\)
\(\Rightarrow A\ge16\)
Đấu = xảy ra khi \(t=2z=4x=4y=1\)
x;y;z;t >0 áp dụng bất đẳng thức Cô-si cho 2 số dương ta có :
=\(x+y\ge2\sqrt{xy}\)
=\(\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\)
=\(\left(x+y+z\right)+t\ge2\sqrt{\left(x+y+z\right)t}\)
nhân các vế tương ứng ta có:
\(\left(x+y\right)\left(x+y+z\right)\left(x+y+z+t\right)\ge8\sqrt{xyzt\left(x+y\right)\left(x+y+z\right)}\)
mà x+y+z+t=2
\(\left(x+y\right)\left(x+y+z\right)2\ge8\sqrt{xyzt\left(x+y\right)\left(x+y+z\right)}\)
=\(\sqrt{\left(x+y\right)\left(x+y+z\right)}\ge4\sqrt{xyzt}\)
=\(\left(x+y\right)\left(x+y+z\right)\ge16xyzt\)
\(\Rightarrow B=\frac{\left(x+y\right)\left(x+y+z\right)}{xyzt}\ge\frac{16xyzt}{xyzt}=16\)
vậy minB=16 khi\(\hept{\begin{cases}x=y\\x+y=z\\x+y+z=t\end{cases}};x+y+z+t=2\Rightarrow x=y=0.25;z=0.5;t=1\)
a) x+y+z=1
⇔[(x+y)+z]2=1
Áp dụng BĐT cô si cho 2 số ta có
(a+b)+c ≥ 2\(\sqrt{\left(a+b\right)c}\)
⇔[(a+b)+c)]2 \(\ge4\left(a+b\right)c\)
⇔1 ≥ 4(a+b)c
nhân cả 2 vế cho số dương \(\dfrac{x+y}{xyz}\) được
\(\dfrac{x+y}{xyz}\ge\dfrac{4\left(x+y\right)^2c}{xyz}\)
⇔\(\dfrac{x+y}{xyz}\ge\dfrac{4z.4xy}{xyz}=16\)
Min A =16 khi \(\left\{{}\begin{matrix}x+y=z\\x=y\\x+z+y=1\end{matrix}\right.\Leftrightarrow x=y=\dfrac{1}{4};z=\dfrac{1}{2}}\)
\(B\ge\dfrac{4\left(x+y+z\right)\left(x+y\right)}{\left(x+y\right)^2zt}=\dfrac{4\left(x+y+z\right)}{\left(x+y\right)zt}\ge\dfrac{16\left(x+y+z\right)}{\left(x+y+z\right)^2t}\)
\(B\ge\dfrac{16}{\left(x+y+z\right)t}\ge\dfrac{64}{\left(x+y+z+t\right)^4}=64\)
\(B_{min}=64\) khi \(\left(x;y;z;t\right)=\left(\dfrac{1}{8};\dfrac{1}{8};\dfrac{1}{4};\dfrac{1}{2}\right)\)
Áp dụng BĐT Cô si ta có :
+) \(x+y\ge2\sqrt{xy}\)
+) \(\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\)
+) \(\left(x+y+z\right)+t\ge2\sqrt{\left(x+y+z\right)t}\)
Nhân từng vế với vế của các BĐT trên ta có :
\(\left(x+y\right)\left(x+y+z\right)\left(x+y+z+t\right)\ge8\sqrt{xyzt\left(x+y\right)\left(x+y+z\right)}\)
\(\Leftrightarrow2\left(x+y\right)\left(x+y+z\right)\ge8\sqrt{xyzt\left(x+y\right)\left(x+y+z\right)}\)
\(\Leftrightarrow\sqrt{\left(x+y\right)\left(x+y+z\right)}\ge4\sqrt{xyzt}\)
\(\Leftrightarrow\left(x+y\right)\left(x+y+z\right)\ge16xyzt\)
\(\Leftrightarrow B=\dfrac{\left(x+y\right)\left(x+y+z\right)}{xyzt}\ge16\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=y\\x+y=z\\x+y+z=t\\x+y+z+t=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=y=\dfrac{1}{4}\\z=\dfrac{1}{2}\\t=1\end{matrix}\right.\)
Vậy...
Ta có:
\(x+y+z+t=2\)
\(\Rightarrow\left[\left(x+y+z\right)+t\right]^2=4\)
Vì \(x,y,z,t>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:
\(\left(x+y+z\right)+t\ge2\sqrt{\left(x+y+z\right)t}\)
\(\Leftrightarrow\left[\left(x+y+z\right)+t\right]^2\ge4\left(x+y+z\right)t\)
\(\Leftrightarrow4\ge4\left(x+y+z\right)t\)(vì \(\left[\left(x+y+z\right)+t\right]^2=4\))
\(\Leftrightarrow\left(x+y+z\right)t\le1\left(1\right)\)
Ta có:
\(P=\frac{\left(x+y+z\right)\left(x+y\right)}{xyzt}=\frac{1.\left(x+y+z\right)\left(x+y\right)}{xyzt}\)
\(\Leftrightarrow P\ge\frac{\left(x+y+z\right)t\left(x+y+z\right)\left(x+y\right)}{xyzt}\)(vì (1))
\(\Leftrightarrow P\ge\frac{\left(x+y+z\right)^2\left(x+y\right)}{xyz}\left(2\right)\)
Đặt \(\frac{\left(x+y+z\right)^2\left(x+y\right)}{xyz}=A\)thì \(P\ge A\)
Vì \(x,y,z>0\)nên áp dụng bất đẳng thúc Cô-si cho 2 số dương, ta được:
\(\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\)
\(\Leftrightarrow\left(x+y+z\right)^2\ge4\left(x+y\right)z\)
Do đó:
\(A=\frac{\left(x+y+z\right)^2\left(x+y\right)}{xyz}\ge\frac{4\left(x+y\right)z\left(x+y\right)}{xyz}\)
\(\Leftrightarrow A\ge\frac{4\left(x+y\right)^2}{xy}\left(3\right)\)
Từ (2) và (3), ta được:
\(P\ge\frac{4\left(x+y\right)^2}{xy}\left(4\right)\)
Vì \(x,y>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:
\(x+y\ge2\sqrt{xy}\)
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow4\left(x+y\right)^2\ge16xy\)
\(\Leftrightarrow\frac{4\left(x+y\right)^2}{xy}\ge\frac{16xy}{xy}=16\left(5\right)\)
Từ (4) và (5), ta được:
\(P\ge16\)
Dấu bằng xảy ra.
\(\Leftrightarrow\hept{\begin{cases}x=y>0\\x+y=z>0\\x+y+z=t>0\end{cases}}\)
Mà \(x+y+z+t=2\)nên:
\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{4}\\z=\frac{1}{2}\\t=1\end{cases}}\)
Vậy \(minP=16\Leftrightarrow x=y=\frac{1}{4};z=\frac{1}{2};t=1\)
Bài 1:a,
A=a/b+c + b/a+c + c/a+b = a^2/ab+ac + b^2/ab+bc + c^2/ac+bc
Áp dụng BĐT dạng Angel : A > hoặc = (a+b+c)^2/ab+ac+ab+bc+ac+bc=(a+b+c)^2/2(ab+bc+ca) > hoặc = 3(ab+bc+ca)/2(ab+bc+ca)=3/2
b,làm tt câu a
Ta có : \(2=\left[\left(x+y+z\right)+t\right]\ge4t\left(x+y+z\right)\)
\(\Rightarrow1\ge2t\left(x+y+z\right)\) (1)
Lại có : \(\left(x+y+z\right)^2=\left[\left(x+y\right)+z\right]^2\ge4z\left(x+y\right)\) (2)
\(\left(x+y\right)^2\ge4xy\) (3)
Nhân (1) , (2) , (3) theo vế được :
\(\left(x+y\right)^2\left(x+y+z\right)^2\ge16xyzt\left(x+y\right)\left(x+y+z\right)\)
\(\Leftrightarrow\left(x+y\right)\left(x+y+z\right)\ge16xyzt\Leftrightarrow\frac{\left(x+y\right)\left(x+y+z\right)}{xyzt}\ge16\)
Suy ra Min B = 16 \(\Leftrightarrow\begin{cases}x+y+z=t\\x+y=z\\x=y\\x+y+z+t=2\end{cases}\) \(\Leftrightarrow\begin{cases}x=y=\frac{1}{4}\\z=\frac{1}{2}\\t=1\end{cases}\)
bạn Ngọc ơi! cho mình hỏi vì sao bạn có được hàng đầu tiên vậy? Nó liên kết với hàng 3 như thế nào? Hàng 1 không bình phương nhưng sao lại vẫn có được như hàng 3?