K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016

Thừa điểm N ???

17 tháng 8 2016

z sao

12 tháng 11 2017

A B C M N

a, xét tam giác ABM và tam giác ACM có:

AB=AC

AM chung

BM=CM

=> tam giác ABM= tam giác ACM (c.c.c)

b,

Tam giác ABM= tam giác ACM => góc BAM= góc CAM

=> AM là tia phân giác của góc BAC

c, AM là tia phân giác của góc BAC => AN là tia phân giác của góc BAC

=> A, M, N thẳng hàng

15 tháng 11 2023

còn thiếu câu b là tia AM nằm giữa 2 toa AB và AC nữa nhé

13 tháng 5 2021

học lớp 7a k

14 tháng 5 2021

7A1 à?

24 tháng 7 2020

A B M I D C K A) XÉT \(\Delta BAI\)VÀ \(\Delta BDI\)CÓ 

BI LÀ CẠNH CHUNG 

\(\widehat{BIA}=\widehat{BID}=90^o\)

\(AI=DI\left(gt\right)\)

=>\(\Delta BAI\)=\(\Delta BDI\)(C-G-C)

=> \(\widehat{ABI}=\widehat{DBI}\)HAY \(\widehat{ABC}=\widehat{DBC}\)

=> BC LÀ PHÂN GIÁC CỦA GÓC\(\widehat{ABD}\)

B) VÌ AI = DI (GT)

=> CI LÀ ĐƯỜNG TRUNG TUYẾN THỨ NHẤT CỦA \(\Delta ACD\)

TA CÓ \(BM=CM\left(GT\right)\)

THAY \(BI+MI=CM\)

MÀ BI = MI (GT) 

\(\Rightarrow2MI=CM\)

MÀ CI LÀ ĐƯỜNG TRUNG TUYẾN THỨ NHẤT CỦA \(\Delta ACD\)

=> M LÀ TRỌNG TÂM CỦA \(\Delta ACD\)

TA CÓ DK = CK (GT)

=> AK LÀ ĐƯỜNG TRUNG TUYẾN THỨ HAI CỦA \(\Delta ACD\)

=> AK BẮT BUỘT ĐI QUA TRỌNG TÂM M

=> A,K,M THẲNG HÀNG

24 tháng 7 2020

C) THEO GT TA CÓ 

\(BC=2AB\)

\(\Leftrightarrow BC=AB+AB\)

\(\Leftrightarrow BC=AB+AM\)( AB = AM )

\(\Leftrightarrow BM+CM=AB+AM\)

\(\Leftrightarrow2CM=2AM\)( BM=CM ; AB=AM)

\(\Leftrightarrow CM=AM\)

=> \(\Delta ACM\)CÂN TẠI M

20 tháng 11 2021

A C B M N K

a) Xét 2 tam giác ABM và ACM:

+ MB=MC

+ AB=AC

+ Cạnh AM chung

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

b) Xét 2 tam giác ANK và BNC

+ NK=NC

+ NA=NB

+ Góc ANK = góc BNC ( hai góc đối đỉnh )

\(\Rightarrow\Delta ANK=\Delta BNC\left(c.g.c\right)\)

\(\Rightarrow AK=BC\)( hai cạnh tương ứng )

Mà M là trung điểm của BC nên BC=2MC

\(\Rightarrow AK=2.MC\)

c) Ta có \(\widehat{AKN}=\widehat{BCN}\)( hai góc tương ứng của hai tam giác bằng nhau )

Mà hai góc AKN và BCN là cặp góc so le trong

\(\Rightarrow AK//BC\)

Vì hai tam giác ABM=ACM nên góc AMB= góc AMC ( hai góc tương ứng )

Mà góc AMB + AMC = 180 độ ( kề bù )\

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)

\(\Rightarrow AM\perp BC\)

 Mà AK//BC

\(\Rightarrow AM\perp AK\)

24 tháng 11 2018

chúc bạn học giỏi

24 tháng 11 2018

bạn ơi chứng minh tam giác ABM=tam giác ACM rồi sao lại còn chứng minh tiếp

6 tháng 1 2018

ABCMH

Kẻ AH vuông góc với BC

Ta có: SABM=BM×AH2  ; SACM=CM×AH2 

Vì CM=BM nên  CM×AH2 =BM×AH2 

=> Diện tích 2 tam giác ABM và ACM = nhau

  
6 tháng 1 2018

A B C M N H

+) Xét tam giác \(ABN\) và tam giác \(ABC\)

2 tam giác chung cạnh \(AB\); chung chiều cao hạ từ \(A\) vuông góc với cạnh \(BC\); cạnh \(BN=\frac{2}{3}\) cạnh \(BC\)

\(\Rightarrow\) diện tích tam giác \(ABN=\frac{2}{3}\) diện tích tam giác \(ABC\)

\(\Rightarrow\) diện tích tam giác \(ABN\) bằng \(340,2\times\frac{2}{3}=226,8\left(cm^2\right)\)

+) Xét tam giác \(AMN\) và tam giác \(ABN\)

2 tam giác chung cạnh \(AN\) ; chung chiều cao hạ từ \(A\) vuông góc với cạnh \(BC\) ; cạnh \(MN=\frac{1}{2}\) cạnh \(BN\)

\(\Rightarrow\) diện tích tam giác \(AMN=\frac{1}{2}\) diện tích tam giác \(ABN\)

\(\Rightarrow\) diện tích tam giác \(AMN\) bằng \(226,8\times\frac{1}{2}=113,4\left(cm^2\right)\)

đáp số : \(113,4cm^2\)

20 tháng 3 2020

A A A B B B C C C M M M D D D 1 2

a) Xét \(\Delta ABM\)và \(\Delta ACM\)có :

AB = AC(gt)

AM chung

BM = CM(gt)

=> \(\Delta ABM=\Delta ACM\left(c.c.c\right)\)

b) Ta có \(\Delta ABM=\Delta ACM\)(theo câu a)

=> \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)

=> AM là tia phân giác của \(\widehat{BAC}\)

c) Xét \(\Delta ABM\)và \(\Delta CDM\)có :

AM = CM(gt)

\(\widehat{M_1}=\widehat{M_2}\)(đối đỉnh)

BM = DM(gt)

=> \(\Delta ABM=\Delta CDM\left(c.g.c\right)\)

=> \(\widehat{ABM}=\widehat{CDM}\)(hai góc so le trong)

=> AB //CD

a: Xét ΔABM và ΔACM có 

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: Xét tứ giác ABMH có 

I là trung điểm của AM

I là trung điểm của BH

Do đó: ABMH là hình bình hành

Suy ra; AH//BM

hay AH//BC