Chứng min rằng không có số x,y nào thỏa mãn đẳng thức:
x2 + 1998 = y2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^2+3y^2-4x+30y+78=0\)
=>\(\left(4x^2-4x+1\right)+3\left(y^2+10y+25\right)+2=0\)
=>\(\left(2x-1\right)^2+3\left(y+5\right)^2+2=0\)(vô lý)
=>\(\left(x,y\right)\in\varnothing\)
\(14,P=x^2+xy+y^2-3x-3y+3\\ P=\left(x^2+xy+\dfrac{1}{4}y^2\right)-3\left(x+\dfrac{1}{2}y\right)+\dfrac{3}{4}y^2-\dfrac{3}{2}y+3\\ P=\left(x+\dfrac{1}{2}y\right)^2-3\left(x+\dfrac{1}{2}y\right)+\dfrac{9}{4}+\dfrac{3}{4}\left(y^2-2y+1\right)\\ P=\left(x+\dfrac{1}{2}y-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\left(y-1\right)^2\ge0\)
\(3x^2+y^2+10x-2xy+26=0\)
\(\left(x-y\right)^2+2x^2+10x+26=0\)
\(\left(x-y\right)^2+\left(2x^2+10x+\frac{5\sqrt{2}}{2}^2\right)+\frac{27}{2}=0\)
\(\left(x-y\right)^2+\left(\sqrt{2}x+\frac{5\sqrt{2}}{2}\right)^2+\frac{27}{2}\ge\frac{27}{2}>0\)
vậy ko có giá trị xy thỏa mã đt
\(x^2+4y^2+z^2-2x+8y-6z+15=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1=0\)
Mà ta có
\(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(2y+2\right)^2\ge0\\\left(z-3\right)^2\ge0\end{cases}}\)
\(\Rightarrow\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1>0\)
Vậy không tồn tại x, y, z thỏa mãn đẳng thức trên
2: Thay x=a-1 vào pt, ta được:
\(\left(a-1\right)^2-a\left(a-1\right)+1=0\)
\(\Leftrightarrow a^2-2a+1-a^2+a+1=0\)
=>2-a=0
hay a=2
\(x^2+1998=y^2\)
\(\Rightarrow y^2-x^2=1998\)
\(\left(y-x\right)\left(y+x\right)=1998\)
Thấy y - x và y + x luôn cùng tính chẵn lẻ. Vì tích chúng là chẵn nên cả 2 số đều phải là chẵn, tức tích là bội của 4.
Mà 1998 lại không chia hết cho 4 nên không có x ; y thỏa mãn.
Vậy ....
x2+1998=y2
=>y2-x2=1998
=>(y-x)(y+x)=1998=......
bn tự liệt kê các ước của 1998 ra nhé rồi giải pt tìm x,y thôi (cách này hơi dài)