bài 7: đôi ngũ hsg trường có 18 hs có 7 hs khối 12,,6 học sinh lớp 11 và 5 học sinh khối 10. hỏi có bao nhiêu các cử 8hs đi thi sao mõi khối ít nhất 1 e
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số cách chọn 8 học sinh gồm hai khối là phần bù của cách chọn 8 học sinh đi dự đại hội sao cho mỗi khối có ít nhất 1 học sinh được chọn.( chú ý mỗi khối đều có ít hơn 8 học sinh).
Số cách chọn 8 học sinh từ hai khối là: .
Số cách chọn 8 học sinh bất kì là:
Số cách chọn thỏa yêu cầu bài toán:
Chọn D.
n(omega)=\(C^7_{18}\)
\(n\left(\overline{A}\right)=C^7_{13}+C^7_{11}+C^7_{12}\)
=>\(P\left(A\right)=1-\dfrac{2838}{31824}=\dfrac{4831}{5304}\)
Số cách chọn 7 em bất kì trong ba khối: \(C|^7_{18}=31824\) (cách)
- Số cách chọn 7 em đi trong 1 khối:
\(C^7_7=1\) (cách)
- Số cách chọn 7 em đi trong 2 khối:
+) 7 em trong khối 12 và 11:
\(C^7_{13}-C^7_7=1715\) (cách)
+) 7 em trong khối 12 và 10:
\(C^7_{12}-C^7_7=791\) (cách)
+) 7 em trong khối 11 và 10:
\(C^7_{11}=330\) (cách)
→ Số cách chọn 7 em đi có cả ba khối:
31824 - 1 -1715 - 791 - 330 = 28987(cách)
Số học sinh lớp 6B chiếm so với số học sinh cả khối là:
3/10.6/5=9/25 (tổng số học sinh)
Số học sinh lớp 6C chiếm so với số học sinh cả khối là:
1-(3/10+9/25)=17/50 (tổng số học sinh)
3 học sinh chiếm là:
9/25-17/50=1/50 (tổng số học sinh)
Tổng số học sinh khối 6 là:
3:1/50=150 (học sinh)
Đáp án C
Phương pháp giải: Sử dụng biến cố đối và các quy tắc đếm cơ bản
Lời giải:
Ta đi làm phần đối của giả thiết, tức là chọn 6 học sinh giỏi chỉ lấy từ một khối hoặc hai khối.
Chọn 6 học sinh giỏi trong 15 học sinh giỏi của 3 khối có C 15 6 = 5005 cách
Số cách chọn 6 học sinh giỏi bằng cách chỉ lấy từ 1 khối 12 là C 6 6 = 1
Chọn 6 học sinh giỏi trong 10 học sinh giỏi của 2 khối 12 và 11 có C 10 6 = 210 cách, tuy nhiên phải trừ đi 1 trường hợp nếu 6 học sinh chỉ ở khối 12 => số cách chọn là 210 - 1 = 209 cách
Chọn 6 học sinh giỏi trong 11 học sinh giỏi của 2 khối 12 và 10 có C 11 6 = 462 cách, uy nhiên phải trừ đi 1 trường hợp nếu 6 học sinh chỉ ở khối 12 => số cách chọn là 462 - 1 = 461 cách.
Chọn 6 học sinh giỏi trong 9 học sinh giỏi của 2 khối 11 và 10 có C 9 6 = 84 cách
Suy ra số cách chọn thỏa mãn yêu cầu bài toán là 5005 - 209 - 461 - 84 - 1 = 4250 cách
số cách chọn 8 học sinh ừ 18 học sinh là :\(C^8_{18}\)
các TH:
thuộc 2 khối 10 và 11: \(C^8_{11}\)
thuộc 2 khói 11 và 12: \(C^8_{13}\)
thuộc 2 khối 13 và 10: \(C^8_{12}\)
=> số cách chọn theo đề là : 414811