giải và biện luận hệ:\(\begin{cases}3x+5y=13\\x^2+3y^2=m\end{cases}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\hept{\begin{cases}x+3y=4\left(1\right)\\2x+5y=7\left(2\right)\end{cases}}\)
Nhân cả hai vế ở phương trình (1) với 2 ta được \(2x+6y=8\)(3)
Lấy (3) - (2) ta được \(y=1\)
Từ đó suy ra x = 4 - 3 . 1 = 4 - 3 = 1
Vậy x = y = 1
\(\hept{\begin{cases}7x-4y=2\left(1\right)\\5x-3y=1\left(2\right)\\mx+3y=m^2+6\left(3\right)\end{cases}}\)
Từ PT ( 1 ), ( 2 ) giải hệ ta được x = 2 ; y = 3
thay x = 2; y = 3 vào PT ( 3 ) được :
2m + 3.3 = m2 + 6 \(\Leftrightarrow\)m2 - 2m - 3 = 0 \(\Leftrightarrow\)m = -1 hoặc m = 3
Vậy nếu m = -1 hoặc m = 3 thì hệ PT có nghiệm ( 2 ; 3 )
nếu m \(\ne\)-1 và m \(\ne\)3 thì hệ PT vô nghiệm
a) HPT đã cho tương đương:
\(\left\{{}\begin{matrix}x^2-3xy+y^2=-1\\-\left(3x^2-xy+3y^2\right)=13\left(x^2-3xy+y^2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-3xy+y^2=-1\\16x^2+16y^2-40xy=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-3xy+y^2=-1\\8\left(2x-y\right)\left(x-2y\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-3xy+y^2=-1\left(1\right)\\\left[{}\begin{matrix}2x=y\\x=2y\end{matrix}\right.\end{matrix}\right.\)
+) Nếu 2x = y thì thay vào (1) ta có \(x^2-6x^2+4x^2=-1\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\).
Với x = 1 thì y = 2. Với x = -1 thì y = -2.
+) Nếu x = 2y thì thay vào (1) ta có \(4y^2-6xy+y^2=-1\Leftrightarrow y^2=1\Leftrightarrow y=\pm1\).
Với y = 1 thì x = 2. Với y = -1 thì x = 2.
Vậy....