Cho tam giác ABC vuông tại A, đường cao AH. AD là phân giác của góc BAH (H và D thuộc BC). Trên tia AH lấy E sao cho AE = AB.
a) Chứng minh BD = DE
b) Trên tia AB lấy F sao cho AF = AH. Chứng minh DE // AC
c) Chứng minh F,D,E thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔBAE có BA=BE(gt)
nên ΔBAE cân tại B(Định nghĩa tam giác cân)
Suy ra: \(\widehat{BAE}=\widehat{BEA}\)(hai góc ở đáy)
mà \(\widehat{BAE}+\widehat{CAE}=90^0\)
và \(\widehat{BEA}+\widehat{HAE}=90^0\)
nên \(\widehat{CAE}=\widehat{HAE}\)
hay AE là tia phân giác của \(\widehat{HAC}\)(Đpcm)
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do dó: ΔBAD=ΔBED
=>DA=DE
b: Sửa đề: BD vuông góc với AE
Ta có: BA=BE
DA=DE
Do đó; BD là trung trực của AE
=>BD vuông góc với AE
c: Xét ΔBFC có BA/AF=BE/EC
nên AE//CF
a) Xét tgiac ABD và EBD có:
+ AB = BE
+ BD chung
+ góc ABD = EBD
=> Tgiac ABD = EBD (c-g-c)
=> đpcm
b) Tgiac ABD = EBD (cmt) => AD = DE (hai cạnh t/ứng)
Xét tgiac ADE có AD = DE => Tgiac ADE cân tại D
=> đpcm
c) AH \(\perp\)BC, DE\(\perp\)BC => AH\(//\)DE
=> góc HAE = AED (2 góc SLT do AH\(//\)DE)
Mà tgiac ADE cân tại D (cmt) => góc AED = DAE
=> góc HAE = DAE
=> AE là tia pgiac góc HAC (đpcm)
d) Xét tgiac ADK và EDC có:
+ góc DAK = DEC = 90o
+ góc ADK = EDC (2 góc đối đỉnh)
+ AD = DE (do tgiac ABD = EBD)
=> Tgiac ADK = EDC (g-c-g)
=> AK = EC và KD = DC (2 cạnh t/ứng)
=> Tgiac KDC cân tại K => Góc DCK = (180o- góc KDC) /2
Tgiac AED cân tại D => góc EAD = (180o- góc ADE) /2
Mà góc ADE = KDC (2 góc đối đỉnh) => góc DCK = EAD
Mà 2 góc này SLT => AE \(//\)KC
=> đpcm
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
=>BC=DE
b: Xét ΔABD vuông tại A có AB=AD
nên ΔABD vuông cân tại A
=>\(\widehat{ABD}=\widehat{ADB}=45^0\)
Xét ΔAEC vuông tại A có AE=AC
nên ΔAEC vuông cân tại A
=>\(\widehat{AEC}=\widehat{ACE}=45^0\)
Ta có: \(\widehat{ABD}=\widehat{AEC}\left(=45^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên BD//CE
a: Xét ΔADH và ΔADB có
AD chung
\(\widehat{DAH}=\widehat{DAB}\)
AH=AB
Do đó: ΔADH=ΔADB
=>\(\widehat{ADH}=\widehat{ADB}\) và \(\widehat{ABD}=\widehat{AHD}\)
Xét ΔAHE vuông tại A và ΔABC vuông tại A có
AH=AB
\(\widehat{AHE}=\widehat{ABC}\)
Do đó: ΔAHE=ΔABC
=>AE=AC
=>ΔAEC cân tại A
Ta có: ΔAEC cân tại A
mà AD là đường phân giác
nên AD\(\perp\)EC
a. xét \(\widehat{ADB}\) và \(\widehat{AED}\) có:
AD CHUNG
AB=AE ( gt)
A1=A2 ( BD là phân giác)
=> tam giác ADB= tam giác AED ( c.g.c)
=> BD=BE ( 2 cạnh tương ứng )
b.c. XEM LẠI ĐỀ BÀI