Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chứng minh rằng :
abc - cba chia hết cho 99
⇔100a + 10b + c − 100c − 10b − a = 99a − 99c = 99(a − c)
⇔ 100a+10b + c − 100c − 10b − a=99a − 99c = 99 (a−c)
=> abc - cba chia hết cho 99
Ta có : \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)
\(=\left(100a-a\right)+\left(10b-10b\right)-\left(100c-c\right)\)
\(=99a-99c=99\left(a-c\right)\) chia hết cho 99
⇔100a + 10b + c − 100c − 10b − a = 99a − 99c = 99(a − c)
⇔ 100a+10b + c − 100c − 10b − a=99a − 99c = 99 (a−c)
=> abc - cba chia hết cho 99
Ta có : \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)
\(=\left(100a-a\right)+\left(10b-10b\right)-\left(100c-c\right)\)
\(=99a-99c=99\left(a-c\right)\) chia hết cho 99