Cho tam giác ABC cân tại A,2 đường trung tuyến BM và CN cắt nhau tại I . Chứng Minh :
A) BM=CN
B) tam giác IBC cân
C) AI là trung tuyến
D) Qua B kẻ Bx vuông góc với AB , qua C kẻ Cy vuông góc với AC
Bx cắt Cy tại K . Chứng minh rằng A;I;K thằng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn chep đề sai r nhe !???
K thể nào là dường trung tuyến BA vì tam giác cân ABC tại A mà???
CÂU A) CM BM= CN ư????
Tớ sữa đề tí nhé::
Cho tam giác ABC cân tại A , 2 đường trung tuyến BM,CD cắt nhau ở I
a) BM = CD
b) tam giác IBC cân
c) AI là trung tuyến ??? AI là dường trung tuyến ư????
d) Qua B kẻ B vuông với AD , Qua C kẻ Cg vuông với AC
Bx cắt Cy' tại B
Chứng minh A,I không thẳng hàng ?? AB nằm trên một đường thẳng thì làm sao mà kẻ B vuông vs AD được ta??? TỚ k hiểu mấy???
a, tam giác ABC cân tại A (gt)
=> AB = AC (Đn)
có M;N lần lượt là trung điểm của AC;AB (gt) => AM = MC = 1/2AC và AN = BN = 1/2BC (tc)
=> AN = AM = BN = CM
xét tam giác NBC và tam giác MCB có : BC chung
^ABC = ^ACB do tam giác ABC cân tại A (Gt)
=> tam giác NBC = tam giác MCB (c-g-c) (1)
b, (1) => ^KBC = ^KCB (đn)
=> tam giác KBC cân tại K (dh)
c, có tam giác ABC cân tại A (gt) => ^ABC = (180 - ^BAC) : 2 (tc)
có AM = AN (câu a) => tam giác AMN cân tại A (đn) => ^ANM = (180 - ^BAC) : 2 (tc)
=> ^ABC = ^ANM mà 2 góc này đồng vị
=> MN // BC (đl)
a. Do ABC là tam giác cân tại A nên AB = AC hay AN = NB = CM = MA.
Xét tam giác AMB và ANC có:
AM = AN; AB = AC; góc A chung nên \(\Delta AMB=\Delta ANC\left(c-g-c\right)\)
b. Từ câu a, \(\widehat{ABM}=\widehat{ACN}\) (Hai góc tương ứng)
Mà tam giác ABC cân tại A nên \(\widehat{B}=\widehat{C}\)
Suy ra \(\widehat{DBC}=\widehat{DCB}\) hay tam giác BDC cân tại D.
c. Ta thấy \(\Delta ABE\) và \(\Delta ACE\) có : \(\widehat{B}=\widehat{C}=90^o;\) AB = AB; AE chung
nên \(\Delta ABE\)= \(\Delta ACE\left(ch-cgv\right)\Rightarrow EB=EC\)
Ta thấy AB = AC, DB = DC, EB = EC nên A, D, E cùng thuộc đường trung trực của BC. Vậy chúng thẳng hàng.
a)Xét ΔBCM và ΔCBN có:
BC chung
góc NBC=góc MCB(ΔABC cân)
BN=MC (gt)
⇨ΔBCM=ΔCBN (c-g-c)
⇨NC=MB (2 cạnh tương ứng)
a: Xét ΔNBC và ΔMCB có
NB=MC
góc NBC=góc MCB
BC chung
=>ΔNBC=ΔMCB
b: ΔNBC=ΔMCB
=>góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
mà AB=AC
nên AO là trung trực của BC
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
em cảm ơn chị ạ