K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2016

TXĐ D=R

\(y'=-x^2+\left(2m+4\right)x-4\)

\(\Delta'=m^2+4m\)

để hàm số đồng biến trên đoạn có độ dài = 2,

 y'=0, hàm số có hai nghiệm phân biệt thỏa:

\(\begin{cases}\Delta'>0\\\left|x_1-x_2\right|=2\end{cases}=\begin{cases}m^2+4m>0\left(1\right)\\\left(x_1+x_2\right)^2-4x_1x_2=4\left(2\right)\end{cases}}\)

 

 

 

29 tháng 9 2016

Theo mình:

để hàm số đồng biến, đk cần là y'=0.

a>0 và \(\Delta'< 0\)

nghịch biến thì a<0 

vì denta<0 thì hầm số cùng dấu với a

mình giải được câu a với b

câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb) 

câu d dùng viet

câu e mình chưa chắc lắm ^^

19 tháng 4 2016

Ta có : \(y'=-x^2+2mx+m-2\Rightarrow\Delta'=m^2+m-2\)

Hàm số đồng biến trên đoạn có độ dài bằng 4 <=> phương trình y' =0 có 2 nghiệm phân biệt \(x_1;x_2\)  và thỏa mãn :

\(\left|x_1-x_2\right|=4\Leftrightarrow\begin{cases}\Delta'>0\\\left|x_1-x_2\right|=4\end{cases}\)

                     \(\Leftrightarrow\begin{cases}m^2+m-2>0\\\left(x_1+x_2\right)^2-4x_1.x_2=16\end{cases}\)

                     \(\Leftrightarrow\begin{cases}m^2+m-2>0\\4m^2+4\left(m-2\right)=16\end{cases}\)

                    \(\Leftrightarrow m=2\) hoặc \(m=-3\)

Kết luận  \(m=2\) hoặc \(m=-3\) thì hàm số đồng biến trên đoạn có độ dài bằng 4

 

 

a: Để hàm số đồng biến trên R thì m-2>0

hay m>2

b: Thay x=0 và y=5 vào hàm số, ta được:

m+3=5

hay m=2

a: Để hàm số đồng biến thì m-2>0

hay m>2

b: Thay x=0 và y=5 vào hàm số,ta được:

\(m+3=5\)

hay m=2

a: Để hàm số đồng biến thì m-2>0

hay m>2

b: Thay x=0 và y=5 vào hàm số,ta được:

\(m+3=5\)

hay m=2

23 tháng 6 2021

1. hàm số nghịch biến khi

\(a< 0\\ \Leftrightarrow m-2< 0\\ \Leftrightarrow m< 2\) 

2. \(y=\left(m-2\right)x+m+3\cap Ox,tại,x=3\)

\(\Rightarrow y=0\)

Có: \(0=\left(m-2\right)3+m+3\\ \Leftrightarrow0=4m-4\\ \Leftrightarrow m=\dfrac{3}{4}\)

3. pt hoành độ giao điểm của 

\(y=-x+2,và,y=2x-1\) là

\(-x+2=2x-1\\ \Leftrightarrow3x=3\Leftrightarrow x=1\Rightarrow y=1\)

A(1,1)

3 đt đồng quy \(\Rightarrow A\in y=\left(m-2\right)x+m+3\\ \Rightarrow1=\left(m-2\right)1+m+3\\ \Leftrightarrow2m=0\\ \Leftrightarrow m=0\)

b: Để hàm số đồng biến thì 2-m>0

hay m<2

a: Để hàm số trên là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m\ge0\\m\ne4\end{matrix}\right.\)

b: Để hàm số đồng biến thì \(\sqrt{m}-2>0\)

hay m>4

b: Để hàm số đồng biến thì 2-m>0

hay m<2