K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2016

Vì tam giác ABC vuông tại A nên:

\(AB^2+AC^2=BC^2\)

=> \(\left(\frac{2}{3}AC\right)^2+AC^2=12^2\)

=>\(\frac{4}{9}AC^2+AC^2=144\)

=>\(AC^2\left(\frac{4}{9}+1\right)=144\)

=>\(AC^2.\frac{13}{9}=144\)

=>\(AC^2=144:\frac{13}{9}=\frac{1296}{13}\)

=> \(AC=\frac{36\sqrt{13}}{13}\)

=> \(AB=AC.\frac{2}{3}=\frac{36\sqrt{13}}{13}.\frac{2}{3}=\frac{24\sqrt{13}}{13}\)

Vậy 2 cạnh góc vuông của tam giác ABC là \(\frac{24\sqrt{13}}{13}\)\(\frac{36\sqrt{13}}{13}\)

16 tháng 7 2023

Ta có \(\Delta ABC\) vuông tại A nên:

\(BC^2=AB^2+AC^2\)

Mà: \(AB=\dfrac{2}{3}AC\)

\(\Rightarrow BC^2=\left(\dfrac{2}{3}AC\right)^2+AC^2\)

\(\Rightarrow12^2=\left(\dfrac{2}{3}AC\right)^2+AC\)

\(\Rightarrow144=\dfrac{4}{9}AC^2+AC^2\)

\(\Rightarrow144=\dfrac{13}{9}AC^2\)

\(\Rightarrow AC^2=\dfrac{144}{\dfrac{13}{9}}\approx100\)

\(\Rightarrow AC\approx\sqrt{100}\approx10\left(cm\right)\)

Ta có \(AC=10cm\Rightarrow AB=\dfrac{2}{3}AC=\dfrac{2}{3}\cdot10\approx6,6\left(cm\right)\) 

Vậy: ....

18 tháng 7 2023

sai rồi ông ơi

 

 

Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2\cdot\dfrac{13}{9}=144\)

\(\Leftrightarrow AC^2=\dfrac{1296}{13}\)

\(\Leftrightarrow AC=\dfrac{36\sqrt{13}}{13}cm\)

\(\Leftrightarrow AB=\dfrac{24\sqrt{13}}{13}cm\)

Hình vẽ chỉ mang tính chất minh họa, bạn tham khảo nhé.

undefined

15 tháng 8 2016

Đặt AC = x (x > 0) => AC = 2/3x

Áp dụng đ/l Pytago , ta có : \(AB^2+AC^2=BC^2\Leftrightarrow x^2+\left(\frac{2x}{3}\right)^2=12^2\Leftrightarrow\frac{13}{9}x^2=144\Leftrightarrow x^2=\frac{1296}{13}\Leftrightarrow x=\frac{36\sqrt{13}}{13}\)(vì x > 0)

Suy ra \(AC=\frac{36\sqrt{13}}{13};AB=\frac{24\sqrt{13}}{13}\)

 

6 tháng 8 2017

Do tam giác ABC vuông tại A nên ta có biểu thức: \(AB^2+AC^2=BC^2\)
Thay các dữ kiện \(BC=12cm\) ; \(AB=\frac{2}{3}AC\) vào biểu thức trên ta được:
\(\left(\frac{2}{3}AC\right)^2+AC^2=12^2\)
\(\Rightarrow\frac{4}{9}AC^2+AC^2=144\)
\(\Rightarrow\frac{13}{9}AC^2=144\)
\(\Rightarrow AC^2=\frac{1296}{13}\)
Do AC là một cạnh tam giác nên \(AC>0\)\(\Rightarrow AC=\frac{36}{\sqrt{13}}cm\)
Khi đó:
\(AB=\frac{2}{3}AC\)
\(\Rightarrow AB=\frac{2}{3}\cdot\frac{36}{\sqrt{13}}\)
\(\Rightarrow AB=2\cdot\frac{12}{\sqrt{13}}\)
\(\Rightarrow AB=\frac{24}{\sqrt{13}}cm\)

23 tháng 1 2017

Bài 1: (bạn tự vẽ hình vì hình cũng dễ)

Ta có: AB = AH + BH = 1 + 4 = 5 (cm)

Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)

Xét tam giác BCH vuông tại H có:

  \(HB^2+CH^2=BC^2\left(pytago\right)\)

  \(4^2+CH^2=5^2\)

  \(16+CH^2=25\)

\(\Rightarrow CH^2=25-16=9\)

\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)

Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé

23 tháng 1 2017

Bài 2: Sử dụng pytago với tam giác ABH => AH

Sử dụng pytago với ACH => AC

Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC

 => AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.

Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago)   mà BN=9cm (gt)

=>AN2+AB2=81        Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81     (1)

Tam giác ABC vuông tại A có: AC2+AB2=BC=> BC2 - AB= AC2   (2)

Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC- AB2)+AB2=81       mà BC=12(cmt)

=> 36 - \(\frac{1}{4}\)AB2+AB2=81

=> 36+\(\frac{3}{4}\)AB2=81

=> AB2=60=>AB=\(\sqrt{60}\)

C2

Cho hình thang cân ABCD có đáy lớn CD = 1

C4

Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath