tìm giá trị nhỏ nhất sao cho x^2+7x-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(\Leftrightarrow10x^2-15x+8x-12+a+12⋮2x-3\)
=>a+12=0
hay a=-12
Câu 2;
Để A là số nguyên thì \(\left(x+2\right)⋮x^2+4\)
\(\Leftrightarrow x^2-4⋮x^2+4\)
\(\Leftrightarrow x^2+4-8⋮x^2+4\)
\(\Leftrightarrow x^2+4\in\left\{4;8\right\}\)
hay \(x\in\left\{0;2;-2\right\}\)
GTNN:
\(\Leftrightarrow x^2+2\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}+1\)
\(\Leftrightarrow x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy Min của biểu thức trên =3/4 khi x+1/2=0 => x=-1/2
GTLL:
\(\Leftrightarrow-3\left(x^2-\frac{7}{3}x-\frac{1}{3}\right)\)
\(\Leftrightarrow-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{49}{36}-\frac{1}{3}\right)\)
\(\Leftrightarrow-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{61}{36}\right)\)
\(\Leftrightarrow-3\left[\left(x-\frac{7}{6}\right)^2-\frac{61}{36}\right]\)
\(\Leftrightarrow-3\left(x-\frac{7}{6}\right)^2+\frac{61}{12}\le\frac{61}{12}\)
Vậy Max của biểu thức trên = 61/12 khi x-7/6=0 => x=7/6
nha . cảm ơn . chúc bạn học tốt
\(f\left(x\right)=2x^2-7x+1\)
=> \(2.f\left(x\right)=4x^2-14x+2\)
=> \(2.f\left(x\right)=\left(2x\right)^2-2.2x.\frac{7}{2}+\frac{49}{4}-\frac{49}{2}+2\)
=> \(2.f\left(x\right)=\left(2x-\frac{7}{2}\right)^2-\frac{45}{2}\)
Có \(\left(2x-\frac{7}{2}\right)^2\ge0\)với mọi x
=> \(\left(2x-\frac{7}{2}\right)^2-\frac{45}{2}\ge\frac{-45}{2}\)với mọi x
=> \(2.f\left(x\right)\ge\frac{-45}{2}\)với mọi x
=> \(f\left(x\right)\ge\frac{-45}{4}\) với mọi x
Dấu "=" xảy ra <=> \(\left(2x-\frac{7}{2}\right)^2=0\)
<=> \(2x-\frac{7}{2}=0\) <=> \(2x=\frac{7}{2}\)<=> \(x=\frac{7}{4}\)
KL: GTNN của f(x) = \(\frac{-45}{4}\)<=> \(x=\frac{7}{4}\)
\(x^2+7x+12=x^2+3x+4x+12=x\left(x+3\right)+4\left(x+3\right)=\left(x+3\right)\left(x+4\right)\)
=> \(B=\left(x+3\right)\left(x+4\right)\left(x-2\right)\left(x-1\right)\)
\(=\left[\left(x+3\right)\left(x-1\right)\right]\left[\left(x+4\right)\left(x-2\right)\right]+2013\)
\(=\left[x^2+2x-3\right]\left[x^2+2x-8\right]+2013\)
Đặt : \(t=x^2+2x-3\)
Ta có: \(B=t\left(t-5\right)+2013=t^2-5t+2013=t^2-2.t.\frac{5}{2}+\frac{25}{4}-\frac{25}{4}+2013\)
\(=\left(t-\frac{5}{2}\right)^2+\frac{8027}{4}\ge\frac{8027}{4}\)
"=" xảy ra <=> \(t=\frac{5}{2}\Leftrightarrow x^2+2x-3=\frac{5}{2}\Leftrightarrow\left(x+1\right)^2=\frac{13}{2}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\frac{13}{2}}-1\\x=-\sqrt{\frac{13}{2}}-1\end{cases}}\)(tm)
Vậy min B = 8027/4 tại x =....
Cho A=2012-1350:[999-(x-1)^2]. Tìm x thuộc N sao cho A đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó
\(VT=\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\\ =\left(x-y\right)^2\left(x+y\right)^2=VP\)
VT\(=\left(x^2+y^2-2xy\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x-y\right)^2\cdot\left(x+y\right)^2\)
\(x^2+7x-2=x^2+7x+\frac{49}{4}-\frac{41}{4}=\left(x+\frac{7}{2}\right)^2-\frac{41}{4}\)
Vì: \(\left(x+\frac{7}{2}\right)^2\ge0\) với mọi x
=> \(\left(x+\frac{7}{2}\right)^2-\frac{41}{4}\ge-\frac{41}{4}\)
Vậy GTNN của biểu thức trên là \(-\frac{41}{4}\) khi \(x=-\frac{7}{2}\)
x2+7x-2= x2+7x +49/4-57/4=(x+7/2)2-57/4
vì (x+7/2)2 >=0 với mọi x thuộc R
→(x+7/2)2-57/4>=-57/4 với mọi x thuộc R
→x2+7x-2>=-57/4
dấu "=" xảy ra ↔(x+7/2)2 =0→x=-7/2
vậy GTNN của x2+7x-2 là -57/4↔x=-7/2