cm:a(a^2-1) chia hết cho 6 (a thuộc z)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu n chia hết cho 3 => n^2 chia hết cho 3 => A không chia hết cho 3
nếu A chia hết cho 3 dư 1 => n-1 chia hết cho A => A chia hết cho 3
Nếu n :3 dư 2 => n+1 chia hết cho 3 => a chia hết cho 3
Vậy A chia hết cho 3 với mọi n
\(a\left(a^2\right)=a.a.a=a^3\)
Thông thường các số lập phương không chia hết cho 6
Nên a3 không chia hết cho 6
Vậy: đề sai
a^2(a+1)+2a(a+1)
=(a+1)(a^2+2a)
=a(a+1)(a+2)
đây là tích 3 số nguyên liên tiếp, mà trong đó thì chắc chắn có 1 số chia hết cho3, 1 số chia hết cho 2 nên tích đó chia hết cho 6.
a(2a-3)-2a(a+1)
= 2a^2 - 3a - 2a^2 - 2a
= - 5a chia hết cho 5
x^2 + 2x + 2
=(x+1)^2 +1
(x+1)^2 là số dương; 1 là số dương nên "cái kết quả trên" lớn hơn 0
-x^2 + 4x - 5
= - (x^2 - 4x + 5)
= - (x - 2)^2 + 1
vậy kết quả trên bé hơn 0
bài này mà gọi là bài lớp 8 hả còn dễ hơn bài lớp 6 em là hs lớp 6
Ta có:
2a(a+1) chắc chắn chia hết cho 2 và a2(a+1) cũng vậy nên tổng trên chia hết cho 2 (1)
a có dạng: 3k;3k+1;3k+2 (k E N)
+) a=3k => tổng trên chia hết cho 3
+) a=3k+1 => a2(a+1) chia 3 dư 2 và: 2a(a+1) chia 3 dư 1
=> tổng trên chia hết cho 3 (2+1=3 chia hết cho 3)
+) a=3k+2=> a+1 chia hết cho 3 nên: tổng trên chia hết cho 3 (2)
Từ (1) và (2)=> tổng trên chia hết cho 2 và 3 mà: (2;3)=1=> a chia hết cho 2.3=6 (ĐPCM)
b, tương tự
thôi shitbo ko biết đừng trả lời hộ mình
a) \(a^2\left(a+1\right)+2a\left(a+1\right)\)
\(=\left(a+1\right)\left(a^2+2a\right)\)
\(=a\left(a+1\right)\left(a+2\right)\)
Vì a; a + 1 và a + 2 là 3 số liên tiếp nên :
+) chắc chắn có một số chia hết cho 2 (1)
+)chắc chắn có một số chia hết cho 3 (2)
Mà ƯC(2;3) = 1
Từ (1) và (2) => \(a\left(a+1\right)\left(a+2\right)⋮2\cdot3=6\left(đpcm\right)\)
c) \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)Vì n nguyên
\(\Rightarrow-5n⋮5\left(đpcm\right)\)
a) \(\left(2n+3\right)^2-9\)
\(=\left(2n+3-3\right)\left(2n+3+3\right)\)
\(=2n\left(2n+6\right)\)
\(=4n\left(n+3\right)\)
Do \(n\in Z\Rightarrow n+3\in Z\)
\(\Rightarrow4n\left(n+3\right)⋮4\left(đpcm\right)\)
\(a\left(a^2-1\right)=\left(a-1\right)\cdot a\cdot\left(a+1\right)\)
Vì a-1;a;a+1 là ba số nguyên liên tiếp
nên \(\left(a-1\right)\cdot a\cdot\left(a+1\right)⋮3!=6\)