K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a\left(a^2-1\right)=\left(a-1\right)\cdot a\cdot\left(a+1\right)\)

Vì a-1;a;a+1 là ba số nguyên liên tiếp

nên \(\left(a-1\right)\cdot a\cdot\left(a+1\right)⋮3!=6\)

24 tháng 7 2015

Nếu n chia hết cho 3 => n^2 chia hết cho 3 => A không chia hết cho 3

nếu A chia hết cho 3 dư 1 => n-1 chia hết cho A => A chia hết cho 3

Nếu n :3 dư 2 => n+1 chia hết cho 3 => a chia hết cho 3 

                  Vậy A chia hết cho 3 với mọi n

đây ko phải bài lớp 4 đâu

8 tháng 11 2015

tich minh noi cho

 

25 tháng 2 2016

k rồi đó sao không nói

24 tháng 7 2015

chắc phải làm dài hơn đấy

24 tháng 7 2015

ngo le ngoc hoa:Quản lí của olm.

4 tháng 8 2016

\(a\left(a^2\right)=a.a.a=a^3\)

Thông thường các số lập phương không chia hết cho 6

Nên a3 không chia hết cho 6

Vậy: đề sai

10 tháng 10 2015

a^2(a+1)+2a(a+1)

=(a+1)(a^2+2a)

=a(a+1)(a+2)

đây là tích 3 số nguyên liên tiếp, mà trong đó thì chắc chắn có 1 số chia hết cho3, 1 số chia hết cho 2 nên tích đó chia hết cho 6.

a(2a-3)-2a(a+1) 

= 2a^2 - 3a - 2a^2 - 2a

= - 5a chia hết cho 5

x^2 + 2x + 2

=(x+1)^2 +1

(x+1)^2 là số dương; 1 là số dương nên "cái kết quả trên" lớn hơn 0

-x^2 + 4x - 5

= - (x^2 - 4x + 5)

= - (x - 2)^2 + 1

vậy kết quả trên bé hơn 0

 

 

29 tháng 1 2018

bài này mà gọi là bài lớp 8 hả còn dễ hơn bài lớp 6 em là hs lớp 6

5 tháng 12 2018

Ta có:

2a(a+1) chắc chắn chia hết cho 2 và a2(a+1) cũng vậy nên tổng trên chia hết cho 2 (1)

 a có dạng: 3k;3k+1;3k+2 (k E N)

+) a=3k => tổng trên chia hết cho 3

+) a=3k+1 => a2(a+1) chia 3 dư 2 và: 2a(a+1) chia 3 dư 1

=> tổng trên chia hết cho 3 (2+1=3 chia hết cho 3)

+) a=3k+2=> a+1 chia hết cho 3 nên: tổng trên chia hết cho 3 (2)

Từ (1) và (2)=> tổng trên chia hết cho 2 và 3 mà: (2;3)=1=> a chia hết cho 2.3=6 (ĐPCM)

b, tương tự

5 tháng 12 2018

thôi shitbo ko biết đừng trả lời hộ mình 

a) \(a^2\left(a+1\right)+2a\left(a+1\right)\)

\(=\left(a+1\right)\left(a^2+2a\right)\)

\(=a\left(a+1\right)\left(a+2\right)\)

Vì a; a + 1 và a + 2 là 3 số liên tiếp nên :

+) chắc chắn có một số chia hết cho 2 (1)

+)chắc chắn có một số chia hết cho 3 (2)

Mà ƯC(2;3) = 1

Từ (1) và (2) => \(a\left(a+1\right)\left(a+2\right)⋮2\cdot3=6\left(đpcm\right)\)

15 tháng 10 2019

c) \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)Vì n nguyên

\(\Rightarrow-5n⋮5\left(đpcm\right)\)

15 tháng 10 2019

a) \(\left(2n+3\right)^2-9\)

\(=\left(2n+3-3\right)\left(2n+3+3\right)\)

\(=2n\left(2n+6\right)\)

\(=4n\left(n+3\right)\)

Do \(n\in Z\Rightarrow n+3\in Z\)

\(\Rightarrow4n\left(n+3\right)⋮4\left(đpcm\right)\)