cho a,b,c >0 . tim min cua P= \(\frac{3a}{b+c}\)+\(\frac{4b}{a+c}\)+\(\frac{5c}{a+b}\)
mình cần gấp trong hôm nay ai rảnh thì giúp mình nhé. Cảm ơn rất nhiều.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\hept{\begin{cases}3a=4b\\2b=5c\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{b}{3}=\frac{a}{4}\\\frac{b}{5}=\frac{c}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{b}{15}=\frac{a}{20}\\\frac{b}{15}=\frac{c}{6}\end{cases}}\Leftrightarrow\frac{a}{20}=\frac{b}{15}=\frac{c}{6}\)
Đặt \(\frac{a}{20}=\frac{b}{15}=\frac{c}{6}=k\Leftrightarrow\hept{\begin{cases}a=20k\\b=15k\\c=6k\end{cases}}\)
Khi đó a2 + b2 + c2 = 661
<=> (20k)2 + (15k)2 + (6k)2 = 661
<=> 661k2 = 661
<=> k2 = 1
<=> k = \(\pm1\)
Khi k = 1 => a = 20 ; b = 15 ; c = 6
Khi k = -1 => a = -20 ; b = - 15 ; c = -6
Ta có \(2a=3b=4c\Leftrightarrow\frac{2a}{12}=\frac{3b}{12}=\frac{4c}{12}\Leftrightarrow\frac{a}{6}=\frac{b}{4}=\frac{c}{3}\)
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{a}{6}=\frac{b}{4}=\frac{c}{3}=\frac{3a}{18}=\frac{4b}{16}=\frac{3a+4b-c}{18+16-3}=\frac{72}{31}\)
=> \(\hept{\begin{cases}a=\frac{432}{31}\\b=\frac{288}{31}\\c=\frac{216}{31}\end{cases}}\)
Câu đề HN vừa thi hôm trước, sửa thành tìm max
Áp dụng BĐT Bunyakovsky ta có:
\(\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le\left(1^2+1^2+1^2\right)\left(a+b+b+c+c+a\right)\)
\(=6\left(a+b+c\right)\le6\)
\(\Rightarrow\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)\le\sqrt{6}\)
Dấu "=" xảy ra khi a = b = c = 1/3
Làm xong mới thấy không giống lắm hihi:D
a/
Đặt $\frac{a-1}{2}=\frac{b-2}{3}=\frac{c-3}{4}=k$
$\Rightarrow a=2k+1; b=3k+2; c=4k+3$
Khi đó:
$3a+3b-c=50$
$\Rightarrow 3(2k+1)+3(3k+2)-(4k+3)=50$
$\Rightarrow 11k+6=50$
$\Rightarrow 11k=44\Rightarrow k=4$
Ta có:
$a=2k+1=2.4+1=9$
$b=3k+2=3.4+2=14$
$c=4k+3=4.4+3=19$
b/
$2a=3b; 5b=7c\Rightarrow \frac{a}{3}=\frac{b}{2}; \frac{b}{7}=\frac{c}{5}$
$\Rightarrow \frac{a}{21}=\frac{b}{14}=\frac{c}{10}$
Áp dụng TCDTSBN:
$\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b+5c}{63-98+50}=\frac{45}{15}=3$
$\Rightarrow a=21.3=63; b=14.3=42; c=10.3=30$
\(\sqrt{\frac{a}{a+b}}+\sqrt{\frac{b}{b+c}}+\sqrt{\frac{c}{c+a}}=\frac{1}{\sqrt{1+\frac{b}{a}}}+\frac{1}{\sqrt{1+\frac{c}{b}}}+\frac{1}{\sqrt{1+\frac{a}{c}}}\)
Đặt \(\frac{b}{a}=x;\frac{c}{b}=y;\frac{a}{c}=z\) khi đó x,y,z>0 và xyz=1
Không mất tính tổng quát giả sử z là số lớn nhất trong 3 số x,y,z \(\Rightarrow z^3\ge xyz=1\Rightarrow z\ge1\)
\(\Rightarrow xy\le1\)
Ta có:\(VT=\frac{1}{\sqrt{1+x}}+\frac{1}{\sqrt{1+y}}+\frac{1}{\sqrt{1+z}}\le\sqrt{2\left(\frac{1}{1+x}+\frac{1}{1+y}\right)}+\frac{1}{\sqrt{1+z}}\)
\(\le\sqrt{2.\frac{2}{1+\sqrt{xy}}}+\frac{1}{\sqrt{1+z}}\)(Vì \(xy\le1\) thì \(\frac{1}{1+x}+\frac{1}{1+y}\le\frac{2}{1+\sqrt{xy}}\) tự chứng minh)
\(=\frac{2}{\sqrt{1+\frac{1}{\sqrt{z}}}}+\frac{1}{\sqrt{1+z}}\)
Ta cần chứng minh:\(\frac{2}{\sqrt{1+\frac{1}{\sqrt{z}}}}+\frac{1}{\sqrt{z+1}}\le\frac{3}{\sqrt{2}}\) với \(z\ge1\)(Tuơng đuơng là ra)
Okie nha
Bài 1:
Đặt \(a^2=x;b^2=y;c^2=z\)
Ta có:\(\sqrt{\frac{x}{x+y}}+\sqrt{\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}}\le\frac{3}{\sqrt{2}}\)
Áp dụng BĐT cô si ta có:
\(\sqrt{\frac{x}{x+y}}=\frac{1}{\sqrt{2}}\sqrt{\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}\frac{3\left(x+z\right)}{2\left(x+y+z\right)}}\)
\(\le\frac{1}{2\sqrt{2}}\left[\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}+\frac{3\left(x+z\right)}{2\left(x+y+z\right)}\right]\)
Tương tự với \(\sqrt{\frac{y}{y+z}}\)và \(\sqrt{\frac{z}{z+x}}\)
Cộng lại ta được:
\(\frac{\sqrt{2}}{3}\left[\frac{x\left(x+y+z\right)}{\left(x+y\right)\left(x+z\right)}+\frac{y\left(x+y+z\right)}{\left(y+z\right)\left(y+x\right)}+\frac{z\left(x+y+z\right)}{\left(z+x\right)\left(z+y\right)}\right]+\frac{3}{2\sqrt{2}}\le\frac{3}{2\sqrt{2}}\)
Sau đó bình phương hai vế rồi
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)đẳng thức đúng
Vậy...
Bài 2:
Trước hết ta chứng minh bất đẳng thức sau:
\(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\le\frac{1}{3}\)
Nhân cả hai vế bđt với 4(a+b+c)4(a+b+c) rồi thu gọn ta được bđt sau:
\(\frac{4a\left(a+b+c\right)}{4a+4b+c}+\frac{4b\left(a+b+c\right)}{4b+4c+a}+\frac{4c\left(a+b+c\right)}{4c+4a+b}\)\(\le\frac{4}{3}\left(a+b+c\right)\)
\(\left[\frac{4a\left(a+b+c\right)}{4a+4b+}-a\right]+\left[\frac{4b\left(a+b+c\right)}{4b+4c+a}-b\right]+\left[\frac{4c\left(a+b+c\right)}{4c+4a+b}-c\right]\le\frac{a+b+c}{3}\)
\(\frac{ca}{4a+4b+c}+\frac{ab}{4b+4c+a}+\frac{bc}{4c+4a+b}\le\frac{a+b+c}{9}\)
Áp dụng bđt cauchy-Schwarz ta có \(\frac{ca}{4a+4b+c}=\frac{ca}{\left(2b+c\right)+2\left(2a+b\right)}\)\(\le\frac{ca}{9}\left(\frac{1}{2b+c}+\frac{2}{2a+b}\right)\)
Từ đó ta có:
\(\text{∑}\frac{ca}{4a+4b+c}\le\frac{1}{9}\text{∑}\left(\frac{ca}{2b+c}+\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ab}{2b+c}\right)=\frac{a+b+c}{9}\)
Đặt VT=A rồi áp dụng bđt cauchy-Schwarz cho VT ta có
\(T^2\le3\left(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\right)\)\(\le3\cdot\frac{1}{3}=1\Leftrightarrow T\le1\)
Dấu = xảy ra khi a=b=c
c bạn tự làm nhé mình mệt rồi :D
Áp dụng BĐT Cauchy-Schwarz dạng phân thức là có ngay mà?
\(\frac{a^2}{b+3c}+\frac{b^2}{c+3a}+\frac{c^2}{a+3b}\ge\frac{\left(a+b+c\right)^2}{4\left(a+b+c\right)}=\frac{a+b+c}{4}\)
Ta có:P=(\(\frac{3a}{b+c}\)\(\frac{3a}{b+c}\)+3)+(\(\frac{4b}{a+c}\)+4)+(\(\frac{5c}{a+b}\)+5)-12
P=(a+b+c)(\(\frac{3}{b+c}\)+\(\frac{4}{c+a}\)+\(\frac{5}{a+b}\))-12
Áp dụng BĐT Bunhiacopxki
P=\(\frac{1}{2}\)((b+c)+(c+a)+(a+b))(\(\frac{3}{b+c}\)+\(\frac{4}{c+a}\)+\(\frac{5}{a+b}\))-12\(\ge\)\(\frac{\left(\sqrt{3}+2+\sqrt{5}\right)^2}{2}\)-12
Dấu''='' xảy ra \(\Leftrightarrow\)\(\frac{b+c}{\sqrt{3}}\)=\(\frac{c+a}{2}\)=\(\frac{a+b}{\sqrt{5}}\)