Cho 2 đường thẳng xy và zt cắt nhau tại O taho thành bốn góc ko kể góc bẹt, trong đó tổng hai góc xOz và góc xOt = 100 độ. Tính số đo 4 góc đó.
Giúp mình với ạ! Mình cảm ơn nhiều!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta sẽ giả sử tổng số đo 3 góc EOM,EON,FOM là 250 độ như đề bài yêu cầu
Cách 1:
Ta có: \(\widehat{EOM}+\widehat{EON}+\widehat{FOM}+\widehat{FON}=360^0\)
=>\(\widehat{FON}+250^0=360^0\)
=>\(\widehat{FON}=110^0\)
\(\widehat{FON}=\widehat{EOM}\)(hai góc đối đỉnh)
mà \(\widehat{FON}=110^0\)
nên \(\widehat{EOM}=110^0\)
\(\widehat{EOM}+\widehat{EON}=180^0\)(hai góc kề bù)
=>\(\widehat{EON}+110^0=180^0\)
=>\(\widehat{EON}=70^0\)
\(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)
mà \(\widehat{EON}=70^0\)
nên \(\widehat{FOM}=70^0\)
Cách 2: \(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)
=>\(\widehat{EON}+\widehat{FOM}=2\cdot\widehat{EON}\)
\(\widehat{EON}+\widehat{FOM}+\widehat{EOM}=250^0\)
=>\(2\cdot\widehat{EON}+\widehat{EOM}=250^0\)(2)
Ta lại có: \(\widehat{EON}+\widehat{EOM}=180^0\)(hai góc kề bù)(1)
nên từ (1),(2) ta sẽ có hệ phương trình:
\(\left\{{}\begin{matrix}2\cdot\widehat{EON}+\widehat{EOM}=250^0\\\widehat{EON}+\widehat{EOM}=180^0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2\cdot\widehat{EON}+\widehat{EOM}-\widehat{EON}-\widehat{EOM}=250^0-180^0=70^0\\\widehat{EON}+\widehat{EOM}=180^0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\widehat{EON}=70^0\\\widehat{EOM}=180^0-70^0=110^0\end{matrix}\right.\)
\(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)
mà \(\widehat{EON}=70^0\)
nên \(\widehat{FOM}=70^0\)
\(\widehat{EOM}=\widehat{FON}\)(hai góc đối đỉnh)
mà \(\widehat{EOM}=110^0\)
nên \(\widehat{FON}=110^0\)
1. Do góc BOC kề bù với góc AOB
=> Tia OA và tia OC đối nhau
Do góc AOD và góc AOB kề bù
=> tia OD và tia OB đối nhau
=> góc BOC và góc AOD là 2 góc đối đỉnh
Gọi OM, ON là 2 tia phân giác góc AOD và góc BOC
=> góc AOM = 1/2 góc AOD = 1/2 (180* - 135*) = 45*/2
mà góc AON = góc AOB + góc BON
=> góc AON = 135* + 45*/2
=> góc AOM + góc AON = 135* + 45*/2 + 45*/2 = 180*
=> góc MON = 180*
=> OM , ON là 2 tia đối nhau
Góc \(\widehat{xOt}\)và \(\widehat{zOx}\)là hai góc kề bù nên \(\widehat{xOt}+\widehat{xOz}=180^0\)mà \(\widehat{xOt}=4\widehat{xOz}\)
Do đó : \(4\widehat{xOz}+\widehat{xOz}=180^0\)hay \(5\widehat{xOz}=180^0\), suy ra \(\widehat{xOz}=180^0:5=36^0\), từ đó \(\widehat{xOt}=4\cdot36^0=144^0\)
Các cặp góc \(\widehat{yOz},\widehat{xOt};\widehat{yOt},\widehat{xOz}\)là cặp góc đối đỉnh , do đó :
\(\widehat{yOz}=\widehat{xOt}=144^0\); \(\widehat{yOt}=\widehat{xOz}=36^0\)
Trả lời :
Bn tham khảo đường link này nhé ^^
Câu hỏi của khongcanten - Toán lớp 7 - Học toán với OnlineMath
Chúc bn hc tốt <3
Ta có : \(\widehat{xOt}\)và \(\widehat{xOz}\)là 2 góc kề bù nên \(\widehat{xOt}+\widehat{xOz}=180^o\)( tc góc kề bù )
mà \(\widehat{xOt}=4\widehat{xOz}\)
Do đó \(4\widehat{xOt}+\widehat{xOz}=180^o\)hay \(5\widehat{xOz}=180^o\)
Vậy \(\widehat{xOz}=180^o:5=36^o\)
Suy ra \(\widehat{xOt}=4.36^o=144^o\)
Các cặp góc \(\widehat{yOz}\)và \(\widehat{xOt}\), \(\widehat{tOy}\)và \(\widehat{xOz}\)là các cặp góc đổi đỉnh do đó:
\(\widehat{yOz}=\widehat{xOt}=144^o\)
\(\widehat{tOy}=\widehat{xOz}=36^o\)
Chúc bạn học tốt !!!