Tìm số nguyên x,y sao cho:
\(\frac{x-1}{3}-\frac{1}{y+2}=\frac{1}{6}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(\frac{x}{3}-\frac{4}{y}=\frac{1}{5}\)
\(\Rightarrow\frac{x}{3}-\frac{1}{5}=\frac{4}{y}\)
\(\Rightarrow\frac{x.5}{15}-\frac{3}{15}=\frac{4}{y}\)
\(\Rightarrow\frac{x.5-3}{15}=\frac{4}{y}\)
\(\Rightarrow\left(x.5-3\right).y=15.4\)
\(\Rightarrow x.5.y-3.5=60\)
\(\Rightarrow xy5-15=60\)
\(\Rightarrow xy5=60+15\)
\(\Rightarrow xy5=75\)
\(\Rightarrow xy=75\div5\)
\(\Rightarrow xy=15\)
\(\Rightarrow xy=1.15=3.5=\left(-15\right)\left(-1\right)=\left(-3\right)\left(-5\right)=\left(-5\right)\left(-3\right)=\left(-1\right)\left(-15\right)=5.3=15.1\)
Do đó x = 1 thì y = 15
x = 3 thì y =5
x = -15 thì y = -1
x = -3 thì y = -5
x = -5 thì y = -3
x = -1 thì y = -15
x = 5 thì y = 3
x = 15 thì y = 1
a) Theo đề bài, ta có :
\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\) => \(\frac{5}{x}=\frac{1+2y}{6}\)
2y+1 | 1 | -1 | 3 | -3 | 5 | -5 | 15 | -15 |
2y | 0 | -2 | 2 | -4 | 4 | -6 | 14 | -16 |
y | 0 | -1 | 1 | -2 | 2 | -3 | 7 | -8 |
x | 30 | -30 | 10 | -10 | 6 | -6 | 2 | -2 |
b) \(\frac{2}{y}-\frac{x}{6}=\frac{1}{30}\) => \(\frac{2}{y}=\frac{5x-1}{30}\)
5x-1 | -1 | 4 | -6 |
5x | 0 | 5 | -5 |
x | 0 | 1 | -1 |
y | -60 | 15 | -10 |
a )x.y=3.5 => x.y =1.15=3.5
x thuộc 1 , 15 , 3 ,5
y thuộc 1,15 , 3 ,5
b )x = 18
y = 2
c ) x= 30
y =0
d phần này mk chưa ra
Có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{6xy}=\frac{1}{6}\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{1}{6xy}=\frac{1}{6}\)
\(\Leftrightarrow\frac{1}{6xy}=\frac{1}{6}-\frac{x+y}{xy}\)
\(\Leftrightarrow\frac{1}{6xy}=\frac{xy-6\left(x+y\right)}{6xy}\)
\(\Rightarrow1=xy-6\left(x+y\right)\)
\(\Leftrightarrow1=xy-6x-6y\)
\(\Leftrightarrow1+36=\left(xy-6x\right)-\left(6y-36\right)\)
\(\Leftrightarrow37=x\left(y-6\right)-6\left(y-6\right)\)
\(\Leftrightarrow37=\left(x-6\right)\left(y-6\right)\)
Vì \(x;y\inℤ\)nên x - 6 và y - 6 thuộc ước của 37
Ta có bảng sau:
\(x-6\) | \(1\) | \(-1\) | \(37\) | \(-37\) |
\(y-6\) | \(37\) | \(-37\) | \(1\) | \(-1\) |
\(x\) | \(7\) | \(5\) | \(43\) | \(-31\) |
\(y\) | \(43\) | \(-31\) | \(7\) | \(5\) |
Vậy ....
Ta có : \(\dfrac{x}{4}-\dfrac{1}{y}=\dfrac{1}{2}\left(y\ne0\right)\)
\(\Leftrightarrow\dfrac{xy-4}{4y}=\dfrac{1}{2}\)
\(\Leftrightarrow2xy-8=4y\)
\(\Leftrightarrow xy-2y-4=0\)
\(\Leftrightarrow y\left(x-2\right)=4\)
\(\Leftrightarrow x-2=\dfrac{4}{y}\left(1\right)\)
Mà x, y là các số nguyên .
\(\Rightarrow y\inƯ_{\left(4\right)}\)
\(\Rightarrow y\in\left\{1;-1;2;-2;4;-4\right\}\)
- Thay lần lượt y vào ( 1 ) ta được x lần lượt là : \(\left\{6;-2;4;0;3;1\right\}\)
Vậy ...
1. \(\frac{-7}{12}\)< \(\frac{x-1}{4}\)< \(\frac{2}{3}\)
=> \(\frac{-7}{12}\)< \(\frac{3.\left(x-1\right)}{12}\)< \(\frac{8}{12}\)
=> 3 . ( x - 1 ) thuộc { - 6 ; - 5 ; - 4 ; - 3 ; - 2 ; - 1 ; 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7}
Lập bảng tính giá trị x , cái này dễ lên bạn tự làm nha
1/ \(-\frac{7}{12}< \frac{x-1}{4}< \frac{2}{3}\)
hay \(\frac{-7}{12}< \frac{3.\left(x-1\right)}{12}< \frac{8}{12}\)
Vậy \(-7< 3.\left(x-1\right)< 8\)
Vậy \(3.\left(x-1\right)\in\left\{-6;-5;-4;...;7\right\}\)
mà \(x\in Z\)nên \(3.\left(x-1\right)⋮3\)
Vậy \(3.\left(x-1\right)\in\left\{-6;-3;0;3;6\right\}\)
hay \(x-1\in\left\{-2;-1;0;1;2\right\}\)
tới đây dễ rồi thì làm nốt nhé, để thời gian làm mấy câu sau!
Trả lời
\(\frac{x-1}{4}-\frac{1}{y+3}=\frac{1}{2}\)
\(\Rightarrow\frac{x-1}{4}-\frac{1}{2}=\frac{1}{y+3}\)
\(\Rightarrow\frac{x-1}{4}-\frac{2}{4}=\frac{1}{y+3}\)
\(\Rightarrow\frac{x-1-2}{4}=\frac{1}{y+3}\)
\(\Rightarrow\frac{x-3}{4}=\frac{1}{y+3}\)
\(\Rightarrow\left(x-3\right)\left(y+3\right)=4\)
Vì \(x,y\inℕ\)\(\Rightarrow x-3;y+3\inℕ\)
\(\Rightarrow x-3;y+3\inƯ\left(4\right)=\left\{1;2;4\right\}\)
Ta có bảng giá trị
x-3 | 1 | 2 | 4 |
y+3 | 4 | 2 | 1 |
x | 4 | 5 | 7 |
y | 1 | -1 | -2 |
Đối chiếu điều kiện \(x,y\inℕ\)
Vậy \(\left(x;y\right)\in\left\{\left(4;1\right)\right\}\)
a/\(\frac{y}{5}+\frac{1}{10}=\frac{1}{x}\)
\(\frac{y.2}{10}+\frac{1}{10}=\frac{1}{x}\)
\(\frac{y.2+1}{10}=\frac{1}{x}\Leftrightarrow\left(y.2+1\right)x=10\)
Ta có Ư(10)={-1;1;-2;2-5;5-10;10}
Mà y.2+1 là số lẻ nên có bảng sau:
\(y.2+1\) | \(-1\) | \(1\) | \(-5\) | \(5\) |
\(y.2\) | \(-2\) | \(0\) | \(-6\) | \(4\) |
\(y\) | \(-1\) | \(0\) | \(-3\) | \(2\) |
\(x\) | \(-10\) | \(10\) | \(-2\) | \(2\) |
b/\(\frac{x}{4}-\frac{1}{2}=\frac{3}{y}\)
\(\frac{x}{4}-\frac{2}{4}=\frac{3}{y}\)
\(\frac{x-2}{4}=\frac{3}{y}\Leftrightarrow\left(x-2\right)y=12\)
Ta có Ư(12)={-1;1;-2;2-3;3;-4;4;-6;6;-12;12}
Ta có bảng sau:
x-2 | -1 | 1 | -2 | 2 | -3 | 3 | -4 | 4 | -6 | 6 | -12 | 12 |
x | 1 | 3 | 0 | 4 | -1 | 5 | -2 | 6 | -4 | 8 | -10 | 14 |
y | -12 | 12 | -6 | 6 | -4 | 4 | -3 | 3 | -2 | 2 | -1 | 1 |
CHÚC BẠN HỌC TỐT!!!
\(\frac{x-1}{3}-\frac{1}{y+2}=\frac{1}{6}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(y+2\right)-3}{3\left(y+2\right)}=\frac{1}{6}\)
\(\Leftrightarrow2\left(x-1\right)\left(y+2\right)-6=\left(y+2\right)\)
\(\Leftrightarrow\left(2x-3\right)\left(y+2\right)=6\)
Vì \(x,y\)nguyên nên \(2x-3,y+2\)là các ước của \(6\)mà \(2x-3\)là số lẻ.
Ta có bảng giá trị: