\(\frac{x-1}{3}-\frac{1}{y+2}=\frac{1}{6}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
1 tháng 8 2021

\(\frac{x-1}{3}-\frac{1}{y+2}=\frac{1}{6}\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(y+2\right)-3}{3\left(y+2\right)}=\frac{1}{6}\)

\(\Leftrightarrow2\left(x-1\right)\left(y+2\right)-6=\left(y+2\right)\)

\(\Leftrightarrow\left(2x-3\right)\left(y+2\right)=6\)

Vì \(x,y\)nguyên nên \(2x-3,y+2\)là các ước của \(6\)mà \(2x-3\)là số lẻ. 

Ta có bảng giá trị: 

2x-3-3-113
y+2-2-662
x0123
y-4-840
8 tháng 7 2016

a) \(\Leftrightarrow\frac{9+x}{3x}=\frac{y}{3}\Leftrightarrow\frac{9+x}{3x}=\frac{xy}{3x}\)

\(\Leftrightarrow\) 9 + x = xy. Có nhiều x;y thỏa mãn với điều kiện 9 + x = xy

b) c) tương tự

7 tháng 3 2018

a/\(\frac{y}{5}+\frac{1}{10}=\frac{1}{x}\)

\(\frac{y.2}{10}+\frac{1}{10}=\frac{1}{x}\)

\(\frac{y.2+1}{10}=\frac{1}{x}\Leftrightarrow\left(y.2+1\right)x=10\)

Ta có Ư(10)={-1;1;-2;2-5;5-10;10}

Mà y.2+1 là số lẻ nên có bảng sau:

\(y.2+1\)\(-1\)\(1\)\(-5\)\(5\)
\(y.2\)\(-2\)\(0\)\(-6\)\(4\)
\(y\)\(-1\)\(0\)\(-3\)\(2\)
\(x\)\(-10\)\(10\)\(-2\)\(2\)
     

b/\(\frac{x}{4}-\frac{1}{2}=\frac{3}{y}\)

\(\frac{x}{4}-\frac{2}{4}=\frac{3}{y}\)

\(\frac{x-2}{4}=\frac{3}{y}\Leftrightarrow\left(x-2\right)y=12\)

Ta có Ư(12)={-1;1;-2;2-3;3;-4;4;-6;6;-12;12}

Ta có bảng sau:

x-2-11-22-33-44-66-1212
x1304-15-26-48-1014
y-1212-66-44-33-22-11

CHÚC BẠN HỌC TỐT!!!

28 tháng 9 2016

x=2; y = 2; z =1

z=2; y =2; x =1

x = 2; z=2; y =1

1 tháng 12 2019

Làm kiểu gì vậy bạn 

4 tháng 5 2018

Trả lời

\(\frac{x-1}{4}-\frac{1}{y+3}=\frac{1}{2}\)

\(\Rightarrow\frac{x-1}{4}-\frac{1}{2}=\frac{1}{y+3}\)

\(\Rightarrow\frac{x-1}{4}-\frac{2}{4}=\frac{1}{y+3}\)

\(\Rightarrow\frac{x-1-2}{4}=\frac{1}{y+3}\)

\(\Rightarrow\frac{x-3}{4}=\frac{1}{y+3}\)

\(\Rightarrow\left(x-3\right)\left(y+3\right)=4\)

Vì \(x,y\inℕ\)\(\Rightarrow x-3;y+3\inℕ\)

\(\Rightarrow x-3;y+3\inƯ\left(4\right)=\left\{1;2;4\right\}\)

Ta có bảng giá trị

x-3124
y+3421
x457
y1-1-2

Đối chiếu điều kiện \(x,y\inℕ\)

Vậy \(\left(x;y\right)\in\left\{\left(4;1\right)\right\}\)

7 tháng 8 2020

a) 3/x + 1/3 = y/3

3/x = y/3 - 1/3

3/x = y-1/3

=> 3 . 3 = x (y - 1)

=> 9 = x (y - 1)

=> x, y - 1 thuộc Ư(9) = {-9 ; -3 ; -1 ; 1 ; 3 ; 9}

Ta có bảng sau:

x-9-3-1139
y-1-1-3-9921
y0-2-81032

Vậy (x ; y) thuộc {(-9 ; 0) ; (-3 ; -2) ; (-1 ; -8) ; (1 ; 10) ; (3 ; 3) ; (9 ; 1)}.

b) x/6 - 1/y = 1/2

1/y = x/6 - 1/2

1/y = x/6 - 3/6

1/y = x-3/6

=> 6 = y (x - 3)

=> y, x - 3 thuộc Ư(6) = {-6 ; -3 ; -2 ; -1 ; 1 ; 2 ; 3 ; 6}

...

Chỗ này bạn tự lập bảng nhé, tương tự như phần trước thôi ạ.

7 tháng 8 2020

Ta có : \(\frac{3}{x}+\frac{1}{3}=\frac{y}{3}\)

=> \(\frac{3}{x}=\frac{y-1}{3}\)

=> x(y - 1) = 9

Lại có 9 = 3.3 = (-3).(-3) = 1.9 = (-1).(-9)

Lập bảng xét các trường hợp ta có

x19-1-93-3
y - 191-9-13-3
y102-804-2

Vậy các cặp (x;y) ta có : (1 ; 10) ; (9 ; 2) ; (-1 ; -8) ; (-9 ; 0) ; (3 ; 4) ; (-3 ; -2)

b) \(\frac{x}{6}-\frac{1}{y}=\frac{1}{2}\)

=> \(\frac{xy-6}{6y}=\frac{1}{2}\)

=> 2(xy - 6) = 6y

=> xy - 6 = 3y

=> xy - 3y = 6

=> y(x - 3) = 6

Ta có 6 = 1.6 = (-1).(-6) = 2.3 = (-2).(-3)

Lập bảng xét các trường hợp

y16-1-623-2-3
x - 361-6-132-3-2
x94-3-26501

Vậy các cặp (x;y) ta có : (1;9) ; (6 ; 4) ; (-1 ; -3) ; (-6 ; -2) ; (2 ; 6) ; (3 ; 5) ; (-2 ; 0) ; (-3 ; 1)

23 tháng 12 2016

a)\(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=\frac{a\left(a+1\right)}{a+1}+\frac{3}{a+1}=a+\frac{3}{a+1}\in Z\)

\(\Rightarrow3⋮a+1\)

\(\Rightarrow a+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow a\in\left\{0;-2;2;-4\right\}\)

b) Phần 1

\(x-2xy+y=0\)

\(\Rightarrow2x-4xy+2y=0\)

\(\Rightarrow2x-4xy+2y-1=-1\)

\(\Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)

\(\Rightarrow\left(2x-1\right)\left(1-2y\right)=-1\)

Lập bảng xét Ư(-1)={1;-1}

Phần 2:

\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(\Leftrightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)

\(\Leftrightarrow\frac{x+y+z+t}{y+z+t}=\frac{y+z+t+x}{z+t+x}=\frac{z+t+x+y}{t+x+y}=\frac{t+x+y+z}{x+y+z}\)

+)XÉt \(x+y+z+t\ne0\) suy ra \(x=y=z=t\), Khi đó \(P=1+1+1+1=4\)

+)Xét \(x+y+z+t=0\) suy ra x+y=-(z+t); y+z=-(t+x); (z+t)=-(x+y); (t+x)=-(y+z)

Khi đó \(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

Vậy P có giá trị nguyên 

21 tháng 6 2019

a) Ta có: \(\left(x-1\right)^2\ge\)\(\forall\)x

            \(\left|y+2\right|\ge0\)\(\forall\) y

=> \(\left(x-1\right)^2+\left|y+2\right|\ge0\)\(\forall\)x,y

=> \(\hept{\begin{cases}\left(x-1\right)^2=0\\y+2=0\end{cases}}\)

=> \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Vậy ...

b) Ta có: \(\frac{1}{2}-\frac{y}{3}=\frac{2}{x}\)

=> \(\frac{3-2y}{6}=\frac{2}{x}\)

=> \(x\left(3-2y\right)=12\)

=> x; 3 - 2y \(\in\)Ư(12) = {1; -1; 2; -2; 3; -3; 4; -4; 6; -6; 12; -12}

Do 3 - 2y là số lẽ , mà x,y \(\in\)Z

=> 3 - 2y \(\in\) {1; -1; 3; -3} 

Lập bảng :

3 - 2y1 -1 3 -3
   x 12 -12 4 -4
   y 1  2  0 3

Vậy ...

22 tháng 9 2018

a, \(\frac{1}{x}=\frac{1}{6}+\frac{y}{3}\)

\(\Rightarrow\frac{1}{x}=\frac{1}{6}+\frac{2y}{6}=\frac{1+2y}{6}\)

\(\Rightarrow1\cdot6=x\cdot\left(1+2y\right)\)

\(\Rightarrow x\left(1+2y\right)=6\)

\(\Rightarrow x;1+2y\inƯ\left(6\right)=\left\{-1;1;-2;2;-3;3;-6;6\right\}\)

ta có bảng :

x-11-22-33-66
1+2y-66-33-22-11
yloạiloại2-1loạiloại10

vậy_

phần b tương tự

Bài 1: a, Tìm số nguyên a để tích hai phân số \(\frac{-19}{5}\) và \(\frac{a}{a-1}\)là một số nguyên.b, Tìm số nguyên a để \(\frac{5}{4}\): \(\frac{a}{a+1}\)được thương là một số nguyên.c,Tìm phân số dương \(\frac{a}{b}\)nhỏ nhất sao cho khi chia \(\frac{a}{b}cho\frac{7}{9}\)hoặc khi chia cho \(\frac{5}{12}\)được mỗi thương là một số tự nhiênBài 2:a,Với giá trị nào của x thì ta...
Đọc tiếp

Bài 1: a, Tìm số nguyên a để tích hai phân số \(\frac{-19}{5}\) và \(\frac{a}{a-1}\)là một số nguyên.

b, Tìm số nguyên a để \(\frac{5}{4}\)\(\frac{a}{a+1}\)được thương là một số nguyên.

c,Tìm phân số dương \(\frac{a}{b}\)nhỏ nhất sao cho khi chia \(\frac{a}{b}cho\frac{7}{9}\)hoặc khi chia cho \(\frac{5}{12}\)được mỗi thương là một số tự nhiên

Bài 2:a,Với giá trị nào của x thì ta có:

1,A= \(\left(x-\frac{3}{4}\right)\left(x+\frac{1}{2}\right)\)là số dương                  2,B=\(\frac{x-0,5}{x+1}\)là số âm.

b,Cho phân số \(\frac{a}{b}\left(b\ne0\right)\).Tìm phân số \(\frac{c}{d}\left(c\ne0,d\ne0\right)\)sao cho \(\frac{a}{b}:\frac{c}{d}=\frac{a}{b}.\frac{c}{d}\)

c, Tìm các cặp số nguyên (x,y) để: \(B=\frac{1}{x-y}:\frac{x+2}{2\left(x-y\right)}\)là số nguyên.

Bài 3: a, Tính : A=\(\left(-2\right)\left(-1\frac{1}{2}\right)\left(-1\frac{1}{3}\right)\left(-1\frac{1}{4}\right)...\left(-1\frac{1}{n}\right)\left(n\in N,n\ne0\right)\)

B=\(\frac{4\frac{1}{4}}{11\frac{1}{3}.5\frac{1}{4}}\)     C= \(\frac{-1:1\frac{1}{15}}{3\frac{1}{8}:6\frac{2}{3}}:\frac{4\frac{7}{8}:13}{5:1\frac{7}{8}}\)    D=\(-\frac{7}{4}\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)\)

E=\(\frac{1}{2}:\left(-1\frac{1}{2}\right):1\frac{1}{3}:\left(-1\frac{1}{4}\right):1\frac{1}{5}:\left(-1\frac{1}{6}\right):...:\left(-1\frac{1}{100}\right)\)   F=\(4+\frac{1}{1+\frac{1}{1+\frac{2}{1+\frac{3}{4}}}}\)

 

 

4
25 tháng 8 2017

fewqfjkewqf

25 tháng 8 2017

Các bạn ơi giải giúp mink vs mink đg cần gấp