tìm giá trị nhỏ nhất của của biểu thức D= x^2+y^2+x-6y+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=x^2+4y^2-2xy-6y-10x+10y+32\)
\(=x^2-2.x\left(y+5\right)+\left(y+5\right)^2-\left(y+5\right)^2+4y^2+4y+32\)
\(=\left(x-y-5\right)^2-y^2-10y-25+4y^2+4y+32\)
\(=\left(x-y-5\right)^2+3y^2-6y+7\)
\(=\left(x-y-5\right)^2+3\left(y^2-2y+1\right)+4\)
\(=\left(x-y-5\right)^2+3\left(y-1\right)^2+4\)
Ta thấy : \(\left(x-y-5\right)^2+3\left(y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow D\ge4\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-5=0\\y-1=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=6\\y=1\end{cases}}\)
Vậy : min \(D=4\) tại \(x=6,y=1\)
\(A=x^2+4x+5=\left(x+2\right)^2+1\ge1\)
Dấu \("="\Leftrightarrow x=-2\)
\(B=x^2+10x-1=\left(x+5\right)^2-26\ge-26\)
Dấu \("="\Leftrightarrow x=-5\)
\(C=5-4x+4x^2=\left(2x-1\right)^2+4\ge4\)
Dấu \("="\Leftrightarrow x=\dfrac{1}{2}\)
\(D=x^2+y^2-2x+6y-3=\left(x-1\right)^2+\left(y+3\right)^2-13\ge-13\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
\(E=2x^2+y^2+2xy+2x+3=\left(x+y\right)^2+\left(x+1\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow x=-y=-1\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
\(A=x^2+4x+5\)
\(=x^2+4x+4+1\)
\(=\left(x+2\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi x=-2
\(C=4x^2-4x+5\)
\(=4x^2-4x+1+4\)
\(=\left(2x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
a/ \(M=x^2+y^2-x+6y+10=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+10-\frac{1}{4}-9\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Suy ra Min M = 3/4 <=> (x;y) = (1/2;-3)
b/
1/ \(A=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Suy ra Min A = 7 <=> x = 2
2/ \(B=x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Suy ra Min B = 1/4 <=> x = 1/2
3/ \(N=2x-2x^2-5=-2\left(x^2-x+\frac{1}{4}\right)-5+\frac{1}{2}=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\)
\(\ge-\frac{9}{2}\)
Suy ra Min N = -9/2 <=> x = 1/2
M = x ^2 - x + 1/4 + y ^2 + 6y + 9 + 3/4
M =( x - 1/4 ) ^2 + ( y + 3 ) ^2 + 3/4
M > = 3/4 với mọi x; y
Dấu bằng <=> x = 1/4 và y = -3
Vậy GTNN của M bằng 3/4 <=> x = 1/4; y = 3
M=x^2-x+1/4+y^2+6y+9+3/4
M=(x-1/4)^2+(y+3)^2+3/4
M >= 3/4 với mọi x; y
Dấu bằng <=> x = 1/4 và y = -3
Vậy GTNN của M bằng 3/4 <=> x = 1/4; y = 3
A = x2 - 10x + 12
= ( x2 - 10x + 25 ) - 13
= ( x - 5 )2 - 13
( x - 5 )2 ≥ 0 ∀ x => ( x - 5 )2 - 13 ≥ -13
Đẳng thức xảy ra <=> x - 5 = 0 => x = 5
=> MinA = -13 <=> x = 5
B = 6y2 + 4y - 1
= 6( y2 + 2/3y + 1/9 ) - 5/3
= 6( y + 1/3 )2 - 5/3
6( y + 1/3 )2 ≥ 0 ∀ x => 6( y + 1/3 )2 - 5/3 ≥ -5/3
Đẳng thức xảy ra <=> y + 1/3 = 0 => y = -1/3
=> MinB = -5/3 <=> y = -1/3
C = x2 + y2 - 2x - 6y - 1
= ( x2 - 2x + 1 ) + ( y2 - 6y + 9 ) - 11
= ( x - 1 )2 + ( y - 3 )2 - 11
\(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y-3\right)^2\ge0\forall y\end{cases}\Rightarrow}\left(x-1\right)^2+\left(y-3\right)^2-11\ge-11\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\y-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)
=> MinC = -11 <=> x = 1 ; y = 3
D = 2x2 + 3y2 - x - 3y + 5
= 2( x2 - 1/2x + 1/16 ) + 3( y2 - y + 1/4 ) + 33/8
= 2( x - 1/4 )2 + 3( y - 1/2 )2 + 33/8
\(\hept{\begin{cases}2\left(x-\frac{1}{4}\right)^2\ge0\forall x\\3\left(y-\frac{1}{2}\right)^2\ge0\forall y\end{cases}}\Rightarrow2\left(x-\frac{1}{4}\right)^2+3\left(y-\frac{1}{2}\right)^2+\frac{33}{8}\ge\frac{33}{8}\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-\frac{1}{4}=0\\y-\frac{1}{2}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=\frac{1}{2}\end{cases}}\)
=> MinD = 33/8 <=> x = 1/4 ; y = 1/2
Câu b mình viết nhầm dấu \(\ge\)đáng lẽ đúng phải là \(\le\)
a)
\(A=x^2+y^2-x+6y+10.\)
\(=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(MinA=\frac{3}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}}\)
b)
\(B=2x-2x^2-5\)
\(=-2\left(x^2-x+\frac{1}{4}\right)+2.\frac{1}{4}-5\)
\(=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Vậy \(MaxB=-\frac{9}{2}\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
Để D có giá trị nhỏ nhất thì x^2 ;4y^2 ;2xy; 6y; 10(x-y) phải có giá trị nhỏ nhất
Mà x^2 >0 hoặc x^2=0 ( với mọi x)
4y^2 >0 hoặc 4y^2 =0 (với mọi y)
=> x^2 =0 suy ra x =0 (4)
4y^2 =0 suy ra y =0 (5)
ta có x= 0 ;y=0 => 6y =0 (1)
2xy = 0 (2)
10(x-y)=0 (3)
Từ (1);(2);(3);(4);(5) => D= 0+0-0-0-0+32
=> D= 32
k minh nha
Ta có:
\(D=x^2+4y^2-2xy-6y-10\left(x-y\right)+32\)
\(=x^2+4y^2-2xy+4y-12x+32\)
\(=\left(x^2+y^2+36-2xy-12x+12y\right)+\left(3y^2-8y+\frac{16}{3}\right)-\frac{28}{3}\)
\(=\left(x-y-6\right)^2+\left(\sqrt{3}y-\frac{4}{\sqrt{3}}\right)^2-\frac{28}{3}\ge-\frac{28}{3}\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-6=0\\\sqrt{3}y-\frac{4}{\sqrt{3}}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{22}{3}\\y=\frac{4}{3}\end{cases}}\)
Vậy \(D_{min}=-\frac{28}{3}\Leftrightarrow\hept{\begin{cases}x=\frac{22}{3}\\y=\frac{4}{3}\end{cases}}\)
\(A=x^2+y^2+xy-6x-6y+2\)
\(\Rightarrow4A=4x^2+4y^2+4xy-24x-24y+8\)
\(=\left(4x^2+4xy+y^2\right)+3y^2-24x-24y+8\)
\(=\left[\left(2x+y\right)^2-12\left(2x+y\right)+36\right]+3y^2-12y-28\)
\(=\left(2x+y-6\right)^2+3\left(y^2-4y+4\right)-40\)
\(=\left(2x+y-6\right)^2+3\left(y-2\right)^2-40\ge-40\)
\(\Rightarrow4A\ge-40\)
\(\Rightarrow A\ge-10\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y-6=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x=6-y\\y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=2\end{cases}}}\)
Vậy \(A_{min}=-10\Leftrightarrow x=y=2\)
P/S: cách giải trên gọi là cách chung riêng !
\(P=x^2+y^2-2x+6y+12\)
\(=\left(x^2-2x+1\right)+\left(y^2-6y+9\right)+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)
Vậy GTNN là 2 đạt được khi \(\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
\(D=x^2+y^2+x-6y+5\)
\(D=\left(x^2+x+\frac{1}{2}^2\right)+\left(y^2-6y+9\right)-\frac{17}{4}\)
\(D=\left(x+\frac{1}{2}\right)^2+\left(y-3\right)^2-\frac{17}{4}\le-\frac{17}{4}\)
dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x=-\frac{1}{2}\\y=3\end{cases}}\)
\(< =>MIN:D=-\frac{17}{4}\)
Trả lời:
\(D=x^2+y^2+x-6y+5=x^2+y^2+x-6y+\frac{1}{4}+9-\frac{17}{4}\)
\(=\left(x^2+x+\frac{1}{4}\right)+\left(y^2-6y+9\right)-\frac{17}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\left(y-3\right)^2-\frac{17}{4}\ge-\frac{17}{4}\forall x;y\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+\frac{1}{2}=0\\y-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=3\end{cases}}}\)
Vậy GTNN của D = - 17/4 khi x = -1/2; y = 3