K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

\(D=x^2+4y^2-2xy-6y-10x+10y+32\)

\(=x^2-2.x\left(y+5\right)+\left(y+5\right)^2-\left(y+5\right)^2+4y^2+4y+32\)

\(=\left(x-y-5\right)^2-y^2-10y-25+4y^2+4y+32\)

\(=\left(x-y-5\right)^2+3y^2-6y+7\)

\(=\left(x-y-5\right)^2+3\left(y^2-2y+1\right)+4\)

\(=\left(x-y-5\right)^2+3\left(y-1\right)^2+4\)

Ta thấy : \(\left(x-y-5\right)^2+3\left(y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow D\ge4\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-5=0\\y-1=0\end{cases}}\)  \(\Leftrightarrow\hept{\begin{cases}x=6\\y=1\end{cases}}\)

Vậy : min \(D=4\) tại \(x=6,y=1\)

1 tháng 5 2017

Để D có giá trị nhỏ nhất thì x^2 ;4y^2 ;2xy; 6y; 10(x-y) phải có giá trị nhỏ nhất

   Mà x^2 >0 hoặc x^2=0 ( với mọi x)

        4y^2 >0 hoặc 4y^2 =0 (với mọi y)

  =>  x^2 =0   suy ra x =0         (4)

       4y^2 =0    suy ra y =0          (5)

ta có x= 0 ;y=0    => 6y =0 (1)

                               2xy = 0  (2)

                               10(x-y)=0  (3)

Từ (1);(2);(3);(4);(5) => D= 0+0-0-0-0+32

                                => D= 32

k minh nha

1 tháng 5 2017

Ta có:

\(D=x^2+4y^2-2xy-6y-10\left(x-y\right)+32\)

\(=x^2+4y^2-2xy+4y-12x+32\)

\(=\left(x^2+y^2+36-2xy-12x+12y\right)+\left(3y^2-8y+\frac{16}{3}\right)-\frac{28}{3}\)

\(=\left(x-y-6\right)^2+\left(\sqrt{3}y-\frac{4}{\sqrt{3}}\right)^2-\frac{28}{3}\ge-\frac{28}{3}\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-6=0\\\sqrt{3}y-\frac{4}{\sqrt{3}}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{22}{3}\\y=\frac{4}{3}\end{cases}}\)

Vậy \(D_{min}=-\frac{28}{3}\Leftrightarrow\hept{\begin{cases}x=\frac{22}{3}\\y=\frac{4}{3}\end{cases}}\)

30 tháng 4 2017

D=x2+4y2-2xy-6y-10(x-y)+32

=x2+4y2-2xy+4y-12x+32

=(x2+y2+36-2xy-12x+12y)+(3y2-8y+\(\dfrac{16}{3}\))-\(\dfrac{28}{3}\)

=(x-y-6)2+(\(\sqrt{3}y-\dfrac{4}{\sqrt{3}}\))2-\(\dfrac{28}{3}\)\(\ge\)-\(\dfrac{28}{3}\) với mọi x;y

=>Min D=-\(\dfrac{28}{3}\) khi và chỉ khi \(\left\{{}\begin{matrix}x-y-6=0\\\sqrt{3}y-\dfrac{4}{\sqrt{3}}=0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=\dfrac{22}{3}\\y=\dfrac{4}{3}\end{matrix}\right.\)

Vậy...

30 tháng 4 2017

phải là x2 + 4y2 - 2xy + 4y - 10y + 32 chứ bn?

30 tháng 8 2020

A = x2 - 10x + 12

= ( x2 - 10x + 25 ) - 13

= ( x - 5 )2 - 13

( x - 5 )2 ≥ 0 ∀ x => ( x - 5 )2 - 13 ≥ -13

Đẳng thức xảy ra <=> x - 5 = 0 => x = 5

=> MinA = -13 <=> x = 5

B = 6y2 + 4y - 1

= 6( y2 + 2/3y + 1/9 ) - 5/3

= 6( y + 1/3 )2 - 5/3

6( y + 1/3 )2 ≥ 0 ∀ x => 6( y + 1/3 )2 - 5/3 ≥ -5/3

Đẳng thức xảy ra <=> y + 1/3 = 0 => y = -1/3

=> MinB = -5/3 <=> y = -1/3

C = x2 + y2 - 2x - 6y - 1

= ( x2 - 2x + 1 ) + ( y2 - 6y + 9 ) - 11

= ( x - 1 )2 + ( y - 3 )2 - 11

\(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y-3\right)^2\ge0\forall y\end{cases}\Rightarrow}\left(x-1\right)^2+\left(y-3\right)^2-11\ge-11\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\y-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

=> MinC = -11 <=> x = 1 ; y = 3

D = 2x2 + 3y2 - x - 3y + 5

= 2( x2 - 1/2x + 1/16 ) + 3( y2 - y + 1/4 ) + 33/8

= 2( x - 1/4 )2 + 3( y - 1/2 )2 + 33/8

\(\hept{\begin{cases}2\left(x-\frac{1}{4}\right)^2\ge0\forall x\\3\left(y-\frac{1}{2}\right)^2\ge0\forall y\end{cases}}\Rightarrow2\left(x-\frac{1}{4}\right)^2+3\left(y-\frac{1}{2}\right)^2+\frac{33}{8}\ge\frac{33}{8}\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-\frac{1}{4}=0\\y-\frac{1}{2}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=\frac{1}{2}\end{cases}}\)

=> MinD = 33/8 <=> x = 1/4 ; y = 1/2

26 tháng 12 2018

đề bài sai r bn ơi phải là +10 chứ ko phải +8 đâu nhá

16 tháng 6 2016

M = x ^2 - x + 1/4 + y ^2 + 6y + 9 + 3/4

M =( x - 1/4 ) ^2 + ( y + 3 ) ^2 + 3/4

M > = 3/4 với mọi x; y

Dấu bằng <=> x = 1/4 và y = -3

Vậy GTNN của M bằng 3/4 <=> x = 1/4; y = 3

16 tháng 6 2016

M=x^2-x+1/4+y^2+6y+9+3/4

M=(x-1/4)^2+(y+3)^2+3/4

M >= 3/4 với mọi x; y

Dấu bằng <=> x = 1/4 và y = -3

Vậy GTNN của M bằng 3/4 <=> x = 1/4; y = 3

28 tháng 12 2017

Có x^2 + 2xy + 4x + 4y + 2y^2 + 3 = 0

--> (x+y)^2 + 4(x+y) + 4+ y^2 - 1 = 0

--> (x+y+2)^2 + y^2 = 1

-->(x+y+2)^2 <= 1 ( vì y^2 >=1)

--> -1 <= x+y+2 <=1

--> 2015 <= x+y+2018 <= 2017

hay 2015 <= Q , dau bang xay ra khi x+y+2=-1 --> x+y=-3

Q<=2017, dau bang xay ra khi  x+y+2=1 --> x+y=-1

Vậy giá trị nhỏ nhất của Q là 2015 khi x+y =-3

 giá trị lớn nhất của Q là 2017 khi x+y=-1

14 tháng 5 2020

giá trị lớn nhất là 2017

4 tháng 9 2021

\(A=x^2+4x+5=\left(x+2\right)^2+1\ge1\)

Dấu \("="\Leftrightarrow x=-2\)

\(B=x^2+10x-1=\left(x+5\right)^2-26\ge-26\)

Dấu \("="\Leftrightarrow x=-5\)

\(C=5-4x+4x^2=\left(2x-1\right)^2+4\ge4\)

Dấu \("="\Leftrightarrow x=\dfrac{1}{2}\)

\(D=x^2+y^2-2x+6y-3=\left(x-1\right)^2+\left(y+3\right)^2-13\ge-13\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)

\(E=2x^2+y^2+2xy+2x+3=\left(x+y\right)^2+\left(x+1\right)^2+2\ge2\)

Dấu \("="\Leftrightarrow x=-y=-1\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

\(A=x^2+4x+5\)

\(=x^2+4x+4+1\)

\(=\left(x+2\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi x=-2

\(C=4x^2-4x+5\)

\(=4x^2-4x+1+4\)

\(=\left(2x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

14 tháng 9 2021

\(x^2+2xy+6x+6y+2y^2+8=0\\ \Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+y^2=-8\)

Ta có \(y^2\ge0\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)\le-8\)

\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+9\le1\\ \Leftrightarrow\left(x+y+3\right)^2\le1\\ \Leftrightarrow\left|x+y+3\right|\le1\\ \Leftrightarrow-1\le x+y+3\le1\\ \Leftrightarrow2012\le B\le2014\)

\(B_{min}=2012\Leftrightarrow\left\{{}\begin{matrix}x+y+2016=2012\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=0\end{matrix}\right.\)

\(B_{max}=2014\Leftrightarrow\left\{{}\begin{matrix}x+y+2016=2014\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.\)

8 tháng 1 2023

s y=0 v ạ