K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2018

Ta có:   \(\frac{a}{a+b+c}< \frac{a}{a+b}< \frac{a+c}{a+b+c}\)

            \(\frac{b}{a+b+c}< \frac{b}{b+c}< \frac{b+a}{a+b+c}\)

             \(\frac{c}{a+b+c}< \frac{c}{c+a}< \frac{c+b}{a+b+c}\)

Cộng 3 BĐT trên vế theo vế ta được:

          \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

Vậy \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) ko thể là số nguyên dương.

       

21 tháng 2 2018

\(P=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+B}.\)

\(P>\frac{\left(a+b+c\right)}{\left(a+b+c\right)}=1\)

suy ra P là số nguyên dương

31 tháng 1 2018

để ảnh đại diện chất đấy

13 tháng 6 2020

Chẳng hiểu gì sất!

8 tháng 8 2016

Ta có:

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)

                                               \(>\frac{a+b+c}{a+b+c}=1\left(1\right)\)

Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}\)

                                               \(< \frac{2.\left(a+b+c\right)}{a+b+c}=2\left(2\right)\)

Từ (1) và (2) => \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)=> \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không là số nguyên dương

12 tháng 11 2019

Ta có

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)       hay \(M>1\)

\(M=\left(1-\frac{a}{b+a}\right)+\left(1-\frac{c}{b+c}\right)+\left(1-\frac{a}{a+c}\right)< 3-\left(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\right)\)

\(=3-1=2\)   hay \(M>2\)

Vậy \(1< M< 2\). Do đó M k thể là số nguyên dương

12 tháng 11 2019

À bài nãy dễ thôi bạn. Lên cao bn sẽ gặp 1 dạng biến hóa nâng cao từ dạng này !!!

Do a,b,c là số nguyên dương

=> a/(a+b) >a/(a+b+c)

b/(b+c)>b/(a+b+c)

c/(c+a)>c/(a+b+c)

=> a/(a+b) + b/(b+c) + c/(c+a)>(a+b+c)/(a+b+c)=1

Lại có

a/(a+b)<(a+c)/(a+b+c)

b/(c+b)<(a+b)/(a+b+c)

c/(a+c)<(b+c)/(a+b+c)

=> a/(a+b) + b/(b+c) + c/(c+a)<2(a+b+c)/(a+b+c)=2

=> 1< a/(a+b) + b/(b+c) + c/(c+a) < 2

=> a/(a+b) + b/(b+c) + c/(c+a) không là số nguyên

9 tháng 8 2016

Gọi số dư của a và b khi chia m là n 

Ta có: a=m*k+n 

          b=m*h+n

=>a-b=m*k+n -(m*h+n)

=m*k+n-m*h-n

=(m*k-m*h)+(n-n)

=m(k-h) luôn chia hết m

Đpcm 

9 tháng 8 2016

là dấu nhân đó

28 tháng 7 2017

à bài này dễ lắm

28 tháng 7 2017

\(S=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

Theo đề ta được:

\(\hept{\begin{cases}a< \left(b+c\right)\\b< \left(a+c\right)\\c< \left(a+b\right)\end{cases}\Rightarrow\hept{\begin{cases}\frac{a}{b+c}< 0\\\frac{b}{a+c}< 0\\\frac{c}{a+b}< 0\end{cases}\Rightarrow}\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ne N}\)( Tổng của ba phân số không thể bằng 1 số tự nhiên với a,b,c không là số âm )

29 tháng 5 2017

Ta có: \(\frac{a}{b+c}>\frac{a}{a+b+c}\)

\(\frac{b}{c+a}>\frac{b}{a+b+c}\)

\(\frac{c}{a+b}>\frac{c}{a+b+c}\)

\(\Rightarrow M>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)(1)

Lại có: \(\frac{a}{b+c}< \frac{a+b}{a+b+c}\)

\(\frac{b}{c+a}< \frac{b+c}{a+b+c}\)

\(\frac{c}{a+b}< \frac{c+a}{a+b+c}\)

\(\Rightarrow M< \frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)(2)

Từ (1);(2) => 1 < M < 2 => đpcm

Ta có:

\(\frac{a}{a+b}>\frac{a}{a+b+c}\);    

\(\frac{b}{b+c}>\frac{b}{a+b+c}\)

\(\frac{c}{c+a}>\frac{c}{a+b+c}\)

Cộng từng vế 3 bất đẳng thức trên, ta được: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a+b+c}{a+b+c}=1\)                 (1)

Ta lại có:

\(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)

\(\frac{b}{b+c}< \frac{a+b}{a+b+c}\)

\(\frac{c}{c+a}< \frac{b+c}{a+b+c}\)

Cộng từng vế ba bất đẳng thức trên, ta được: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{2\left(a+b+c\right)}{a+b+c}=2\)                        (2)

Từ (1) và (2) suy ra:

\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

Vậy P không phải là số nguyên