tìm x biết
a. (x+1)(x+3)(x+5)(x+7)+15 = 0
b. (x\(^2\) +x)(x\(^2\) +x+1) = 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: =>x=0 hoặc x+3=0
=>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
a. 2x+\(\dfrac{4}{5}\)=0 hoặc 3x-\(\dfrac{1}{2}\)=0
2x=- 4/5 hoặc 3x=1/2
x=-2/5 hoặc x=\(\dfrac{1}{6}\)
b. x-\(\dfrac{2}{5}\)=0 hoặc x+\(\dfrac{4}{7}\)=0
x=2/5 hoặc x=-\(\dfrac{4}{7}\)
d. x(1+5/8-12/16)=1
\(\dfrac{7}{8}\)x=1=> x=8/7
Bài 2:
a: =>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
a) (2x - 3)(6 - 2x) = 0
=> \(\left[{}\begin{matrix}2x-3=0\\6-2x=0\end{matrix}\right.=>\left[{}\begin{matrix}2x=3\\2x=6\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=3\end{matrix}\right.\)
b) \(5\dfrac{4}{7}:x=13=>\dfrac{39}{7}:x=13=>x=\dfrac{39}{7}:13=>x=\dfrac{3}{7}\)
c) \(2x-\dfrac{3}{7}=6\dfrac{2}{7}=>2x-\dfrac{3}{7}=\dfrac{44}{7}=>2x=\dfrac{47}{7}=>x=\dfrac{47}{14}\)
d) \(\dfrac{x}{5}+\dfrac{1}{2}=\dfrac{6}{10}=>\dfrac{x}{5}=\dfrac{6}{10}-\dfrac{1}{2}=>\dfrac{x}{5}=\dfrac{1}{10}=>x.10=5=>x=\dfrac{1}{2}\)
e) \(\dfrac{x+3}{15}=\dfrac{1}{3}=>\left(x+3\right).3=15=>x+3=5=>x=2\)
b: Ta có: \(\left(x-2\right)^3-x^2\left(x-6\right)=4\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+6x^2=4\)
\(\Leftrightarrow12x=12\)
hay x=2
d: Ta có: \(3\left(x-1\right)^2-3x\left(x-5\right)=1\)
\(\Leftrightarrow3x^2-6x+3-3x^2+15x=1\)
\(\Leftrightarrow9x=-2\)
hay \(x=-\dfrac{2}{9}\)
a) \(\Leftrightarrow x^2-4x-x^2+6x-9=0\\ \Leftrightarrow2x=9\\ \Leftrightarrow x=4,5\)
b) \(\Leftrightarrow x^2-3x-10=0\\ \Leftrightarrow\left(x^2+2x\right)-\left(5x+10\right)=0\\ \Leftrightarrow x\left(x+2\right)-5\left(x+2\right)=0\\ \left(x-5\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
c) \(\Leftrightarrow\left(2x-3-7\right)\left(2x-3+7\right)=0\\ \Leftrightarrow\left(2x-10\right)\left(2x+4\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
d) \(\Leftrightarrow\left(2x+7\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\end{matrix}\right.\)
Bài 1:
b: \(3x-6=x^2-16\)
\(\Leftrightarrow x^2-3x-10=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
a: \(\left(x+5\right)^2-\left(x-5\right)^2-2x+1=0\)
=>\(x^2+10x+25-\left(x^2-10x+25\right)-2x+1=0\)
=>\(x^2+8x+26-x^2+10x-25=0\)
=>18x+1=0
=>\(x=-\dfrac{1}{18}\)
b: \(\left(2x-7\right)^2-\left(x+3\right)^2=3x^2+6\)
=>\(4x^2-28x+49-\left(x^2+6x+9\right)-3x^2-6=0\)
=>\(x^2-28x+43-x^2-6x-9=0\)
=>34-34x=0
=>34x=34
=>x=1
c: \(\left(3x+2\right)^2-9\left(x-5\right)\left(x+5\right)=225-5x\)
=>\(9x^2+12x+4-9\left(x^2-25\right)-225+5x=0\)
=>\(9x^2+17x+4-225-9x^2+225=0\)
=>17x+4=0
=>x=-4/17
Bài 6. Tìm x ϵ N biết
a) (x –15) .15 = 0
b) 32 (x –10 ) = 32
c) ( x – 5)(x – 7) = 0
d) (x – 35).35 = 35
1) 2(x + 5) + 3(x + 7) = 41
2x + 10 + 3x + 21 = 41
5x + 31 = 41
5x = 10
x = 2
6) 7(x - 1) + 5(3 - x) = 11x - 10
7x - 7 + 15 - 5x = 11x - 10
2x + 8 = 11x - 10
-9x = -18
x = 2
2) 5(x + 6) + 2(x - 3) = 38
5x + 30 + 2x - 6 = 38
7x + 24 = 38
7x = 14
x = 2
7) 4(2 + x) + 3(x - 2) = 12
8 + 4x + 3x - 6 = 12
7x + 2 = 12
7x = 10
x = 10/7
3) 7(5 + x) + 2(x - 10) = 15
35 + 7x + 2x - 20 = 15
9x + 15 = 15
9x = 0
x = 0
8) 5(2 + x) + 4(3 - x) = 10x - 15
10 + 5x + 12 - 4x = 10x - 15
x + 22 = 10x - 15
9x = 37
x = 37/9
4) 3(x + 4) + (8 - 2x) = 22
3x + 12 + 8 - 2x = 22
x + 20 = 22
x = 2
9) 7(x - 2) + 5(3 - x) = 11x - 6
7x - 14 + 15 - 5x = 11x - 6
2x + 1 = 11x - 6
-9x = -7
x = 7/9
5) 4(x + 5) + 3(7 - x) = 49
4x + 20 + 21 - 3x = 49
x + 41 = 49
x = 8
10) 5(3 - x) + 5(x + 4) = 6 + 4x
15 - 5x + 5x + 20 = 6 + 4x
35 = 6 + 4x
4x = 29
x = 29/4
1) 2(x + 5) + 3(x + 7) = 41
2x + 10 + 3x + 21 = 41
5x + 31 = 41
5x = 41 - 31
5x = 10
x = 10 : 5
x = 2
2) 5(x + 6) + 2(x - 3) = 38
5x + 30 + 2x - 6 = 38
7x + 24 = 38
7x = 38 - 24
7x = 14
x = 14 : 7
x = 2
3) 7(5 + x) + 2(x - 10) = 15
35 + 7x + 2x - 20 = 15
9x + 15 = 15
9x = 15 - 15
9x = 0
x = 0
4) 3(x + 4) + (8 - 2x) = 22
3x + 12 + 8 - 2x = 22
x + 20 = 22
x = 22 - 20
x = 2
5) 4(x + 5) + 3(7 - x) = 49
4x + 20 + 21 - 3x = 49
x + 41 = 49
x = 49 - 41
x = 8
6) 7(x - 1) + 5(3 - x) = 11x - 10
7x - 7 + 15 - 5x = 11x - 10
2x - 11x + 8 = -10
-9x = -10 - 8
-9x = -18
x = -18 : (-9)
x = 2
7) 4(2 + x) + 3(x - 2) = 12
8 + 4x + 3x - 6 = 12
7x + 2 = 12
7x = 12 - 2
7x = 10
x = 10/7
8) 5(2 + x) + 4(3 - x) = 10x - 15
10 + 5x + 12 - 4x = 10x - 15
10x - 15 = x + 22
10x - x = 22 + 15
9x = 37
x = 37/9
9) 7(x - 2) + 5(3 - x) = 11x - 6
7x - 14 + 15 - 5x = 11x - 6
11x - 6 = 2x + 1
11x - 2x = 1 + 6
9x = 7
x = 7/9
10) 5(3 - x) + 5(x + 4) = 6 + 4x
15 - 5x + 5x + 20 = 6 + 4x
6 + 4x = 35
4x = 35 - 6
4x = 29
x = 29/4
a) Ta có: (x + 1)(x + 3)(x + 5)(x + 7) + 15 = 0
<=> (x2 + 8x + 7)(x2 + 8x + 15) + 15 = 0
<=> (x2 + 8x + 7)2 + 8(x2 + 8x + 7) + 15 = 0
<=> (x2 + 8x +7 )2 + 3(x2 + 8x + 7) + 5(x2 + 8x + 7) + 15 = 0
<=> (x2 + 8x + 7 + 3)(x2 + 8x + 7 +5) = 0
<=> (x2 + 8x + 10)(x2 + 8x + 12) = 0
<=> \(\orbr{\begin{cases}x^2+8x+10=0\\x^2+8x+12=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x+4\right)^2-6=0\\x^2+6x+2x+12=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x+4\right)^2=6\left(1\right)\\\left(x+6\right)\left(x+2\right)=0\left(2\right)\end{cases}}\)
Giải (1) <=> \(\orbr{\begin{cases}x+4=\sqrt{6}\\x+4=-\sqrt{6}\end{cases}}\) <=> \(\orbr{\begin{cases}x=\sqrt{6}-4\\x=-\sqrt{6}-4\end{cases}}\)
Giải (2) <=> \(\orbr{\begin{cases}x=-6\\x=-2\end{cases}}\)
b) Ta có: (x2 + x)(x2 + x + 1) = 6
<=> (x2 + x)2 + (x2 + x) - 6 = 0
<=> (x2 + x)2 + 3(x2 + x) - 2(x2 + x) - 6 = 0
<=> (x2 + x + 3)(x2 + x - 2) = 0
<=> x2 + 2x - x - 2 = 0 (vì x2 + x + 3 = (x + 1/2)^2 + 11/4 > 0)
<=> (x + 2)(x - 1) = 0
<=> \(\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)