\(^2\) +x)(x
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2021

a) Ta có: (x + 1)(x + 3)(x + 5)(x + 7) + 15 = 0

<=> (x2 + 8x + 7)(x2 + 8x + 15) + 15 = 0

<=> (x2 + 8x + 7)2 + 8(x2 + 8x + 7) + 15 = 0

<=> (x2 + 8x +7 )2  + 3(x2 + 8x + 7) + 5(x2 + 8x + 7) + 15 = 0

<=> (x2 + 8x + 7 + 3)(x2 + 8x  + 7 +5) = 0

<=> (x2 + 8x + 10)(x2 + 8x + 12) = 0

<=> \(\orbr{\begin{cases}x^2+8x+10=0\\x^2+8x+12=0\end{cases}}\)

<=> \(\orbr{\begin{cases}\left(x+4\right)^2-6=0\\x^2+6x+2x+12=0\end{cases}}\)

<=> \(\orbr{\begin{cases}\left(x+4\right)^2=6\left(1\right)\\\left(x+6\right)\left(x+2\right)=0\left(2\right)\end{cases}}\)

Giải (1) <=> \(\orbr{\begin{cases}x+4=\sqrt{6}\\x+4=-\sqrt{6}\end{cases}}\) <=> \(\orbr{\begin{cases}x=\sqrt{6}-4\\x=-\sqrt{6}-4\end{cases}}\)

Giải (2) <=> \(\orbr{\begin{cases}x=-6\\x=-2\end{cases}}\)

b) Ta có: (x2 + x)(x2 + x + 1) = 6

<=> (x2 + x)2 + (x2  + x) - 6 = 0

<=> (x2 + x)2 + 3(x2 + x) - 2(x2 + x) - 6 = 0

<=> (x2 + x + 3)(x2 + x - 2) = 0

<=> x2 + 2x - x - 2 = 0 (vì x2  + x + 3 = (x + 1/2)^2 + 11/4 > 0)

<=> (x + 2)(x - 1) = 0

<=> \(\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)

4 tháng 2 2018

a. \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)

<=> \(5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-6\cdot5\)

<=> \(25x+10-80x+10=24x+12-30\)

<=> \(25x-80x-24x=12-30-10-10\)

<=> \(-79x=-38\)

<=> \(x=\dfrac{-38}{-79}\)

\(x=\dfrac{38}{79}\)

b. \(x-\dfrac{2x-5}{5}+\dfrac{x+8}{6}=7+\dfrac{x-1}{3}\)

<=> \(30\cdot x-6\left(2x-5\right)+5\left(x+8\right)=30\cdot7+10\left(x-1\right)\)

<=> \(30x-12x+30+5x+40=210+10x-10\)

<=> \(30x-12x+5x-10x=210-10-30-40\)

<=> \(13x=130\)

<=> \(x=\dfrac{130}{13}\)

\(x=10\)

c. \(\dfrac{x+1}{15}+\dfrac{x+2}{7}+\dfrac{x+4}{4}+6=0\)

<=> \(28\left(x+1\right)+60\left(x+2\right)+105\left(x+4\right)+420\cdot6=0\)

<=> \(28x+28+60x+120+105x+420+2520=0\)

<=> \(28x+60x+105x=-28-120-420-2520\)

<=> \(193x=-3088\)

<=> \(x=\dfrac{-3088}{193}\)

\(x=-16\)

d. \(\dfrac{x-342}{15}+\dfrac{x-323}{17}+\dfrac{x-300}{19}+\dfrac{x-273}{21}=10\)

<=> \(6783\left(x-342\right)+5985\left(x-323\right)+5355\left(x-300\right)+4845\left(x-273\right)=101745\cdot10\)

<=> \(6783x-2319786+5985x-1933155+5355x-1606500+4845x-1322685=1017450\)

<=> \(6783x+5985x+5355x+4845x=1017450+2319786+1933155+1606500+1322685\)

<=> \(22968x=8199576\)

<=> \(x=\dfrac{8199576}{22968}\)

\(x=357\)

4 tháng 2 2018

Đề là giải PT nha các bn

5 tháng 11 2017

1.

a. x2 - 2x + 1 = 0

x2 - 2x*1 + 12 = 0

(x-1)2 = 0

............( tới đây tui bí rùi tự suy nghĩ rùi lm tiếp ik)

1, Tìm x biết:

a, x2 - 2x +1 = 0

(x-1)2 = 0

x-1 = 0

x = 1. Vậy ...

b, ( 5x + 1)2 - (5x - 3) ( 5x + 3) = 30

25x2 +10x + 1 - (25x2 -9) = 30

25x2 +10x + 1 - 25x2 +9 = 30

10x + 10 =30

10(x+1) = 30

x+1 =3

x = 2. vậy ...

c, ( x - 1) ( x2 + x + 1) - x ( x +2 ) ( x - 2) = 5

(x3 - 1) - x(x2 -4) = 5

x3 - 1 - x3 + 4x = 5

4x - 1 = 5

4x = 6

x = \(\dfrac{3}{2}\) .vậy ...

d, ( x - 2)3 - ( x - 3) ( x2 + 3x + 9 ) + 6 ( x + 1)2 = 15

x3 - 6x2 + 12x - 8 - (x3 - 27) + 6 (x2 + 2x +1) =15

x3 - 6x2 + 12x - 8 - x3 + 27 + 6x2 + 12x +6 =15

24x + 25 = 15

24x = -10

x = \(\dfrac{-5}{12}\) vậy ...

16 tháng 8 2017

ANH HAY CHỊ ƠI LÀM GIÚP EM BAI LỚP 7 ĐI O DUOI DAY A

16 tháng 8 2017

a) \(\left(x-3\right)^2-4=0\)

\(\Rightarrow\left(x-3\right)^2=4\)

\(\Rightarrow\left(x-3\right)^2=2^2=\left(-2\right)^2\)

\(\Rightarrow x-3=2\)hoặc \(\left(x-3\right)=-2\)

\(\Rightarrow\hept{\begin{cases}x-3=2\\x-3=-2\end{cases}\Rightarrow\hept{\begin{cases}x=5\\x=-1\end{cases}}}\)

Vậy \(x\in\left\{5;-1\right\}\)

b) \(x^2-2x=24\)

\(\Rightarrow x.\left(x+2\right)=24\)

\(\Rightarrow x.\left(x+2\right)=4.6\)

\(\Rightarrow x=4\)

Vậy \(x=4\)

6 tháng 7 2017

a) \(25x^2-9=0\)

\(\Leftrightarrow\left(5x\right)^2-3^2=0\)

\(\Leftrightarrow\left(5x+3\right)\left(5x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}5x+3=0\\5x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{3}{5}\\x=\frac{3}{5}\end{cases}}\)

b) \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)

\(\Leftrightarrow x^2+8x+16-x^2+1=16\)

\(\Leftrightarrow8x+17=16\)

\(\Leftrightarrow8x=-1\)

\(\Leftrightarrow x=-\frac{1}{8}\)

6 tháng 7 2017

a) ko hiểu đề bài

b) Ta có (x + 4)2 - (x + 1)(x - 1) = 16

<=> x2 + 8x + 16 - (x2 - 1) = 16

<=>  x2 + 8x + 16 - x2 + 1 = 16

<=> 8x + 17 = 16

=> 8x = -1

=> x = \(-\frac{1}{8}\)

25 tháng 3 2020

a, x( x - 1) = x ( x + 2)

<=> x2 - x = x2 + 2x

<=>  x2 - x - x2 - 2x = 0

<=> -3x = 0

<=> x = 0

b, tương tự câu a

c,\(\Leftrightarrow\frac{3x-3}{4}=2-\frac{x-2}{8}\)        

\(\Leftrightarrow\frac{\left(3x-3\right)2}{8}=\frac{16}{8}-\frac{x-2}{8}\)

\(\Leftrightarrow\frac{6x-6}{8}=\frac{16}{8}-\frac{x-2}{8}\)

=> 6x - 6 = 16 - x + 2

<=> 6x + x = 16 + 2 + 6

<=> 7x = 24

<=> x=\(\frac{24}{7}\)

Các câu còn lại làm tương tự

21 tháng 10 2021

\(A=\left(x-4\right)^2-\left(x+4\right)^2-16\left(x-2\right)\)

\(=x^2-8x+16-x^2-8x-16-16x+32\)

\(=-32x+32\)

Biểu thức phụ thuộc vào giá trị của biến

21 tháng 10 2021

b) \(\left(x-3\right)^3-\left(x+3\right)^3+12\left(x+1\right)\left(x-1\right)\)

\(=\left(x^3-9x^2+27x-27\right)-\left(x^3+9x^2+27x+27\right)+12x^2-12\)

\(=-6x^2-66\)

Biểu thức này phụ thuộc vào giá trị của biến

18 tháng 2 2021

a) ĐKXĐ : \(x\ne-2;x\ne5\)

\(\frac{7}{x+2}=\frac{3}{x-5}\)

<=> 3(x + 2) = 7(x - 5)

<=> 3x + 6 = 7x - 35

<=> 4x = 41

<=>x = 41/4 (tm)

Vậy x = 41/4 là ngiệm phương trình

b) ĐKXĐ \(x\ne\pm3\)

\(\frac{2x-1}{x+3}=\frac{2x}{x-3}\)

<=> \(\frac{\left(2x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)

<=> (2x - 1)(x - 3) = 2x(x + 3)

<=> 2x2 - 7x + 3 = 2x2 + 6x

<=> 13x = 3

<=> x = 3/13 (tm)

Vậy x = 3/13 là nghiệm phương trình

c) ĐKXĐ : \(x\ne-7;x\ne1,5\)

Khi đó \(\frac{3x-2}{x+7}=\frac{6x+1}{2x-3}\)

<=> \(\frac{\left(3x-2\right)\left(2x-3\right)}{\left(x+7\right)\left(2x-3\right)}=\frac{\left(6x+1\right)\left(x+7\right)}{\left(x+7\right)\left(2x-3\right)}\)

<=> (3x - 2)(2x - 3) = (6x + 1)(x + 7)

<=> 6x2 - 13x + 6 = 6x2 + 43x + 7

<=> 56x = -1

<=> x = -1/56 (tm) 

Vậy x = -1/56 là nghiệm phương trình

d) ĐKXĐ : \(x\ne\pm1\)

Khi đó \(\frac{2x+1}{x-1}=\frac{5\left(x-1\right)}{x+1}\)

<=> \(\frac{\left(2x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{5\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\)

<=> (2x + 1)(x + 1) = 5(x - 1)2

<=> 2x2 + 3x + 1 = 5x2 - 10x + 5

<=> 3x2 - 13x + 4 = 0

<=> 3x2 - 12x - x + 4 = 0

<=> 3x(x - 4) - (x - 4) = 0

<=> (3x - 1)(x - 4) = 0

<=> \(\orbr{\begin{cases}3x-1=0\\x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\left(tm\right)\\x=4\left(tm\right)\end{cases}}\)

Vậy x \(\in\left\{\frac{1}{3};4\right\}\)là nghiệm phương trình

18 tháng 2 2021

e) ĐKXĐ : \(x\ne1\)

Khi đó \(\frac{4x-5}{x-1}=2+\frac{x}{x-1}\)

<=> \(\frac{3x-5}{x-1}=2\)

<=> 3x - 5 = 2(x - 1) 

<=> 3x - 5 = 2x - 2

<=> x = 3 (tm) 

Vậy x = 3 là nghiệm phương trình

f) ĐKXĐ : \(x\ne-1\)

 \(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)

<=> \(\frac{3x+2}{x+1}=3\)

<=> 3x + 2 = 3(x + 1)

<=> 3x + 2 = 3x + 3

<=> 0x = 1

<=> \(x\in\varnothing\)

Vậy tập nghiệm phương trình S = \(\varnothing\)

g) ĐKXĐ : \(x\ne2\)

Khi đó \(\frac{1}{x-2}+3=\frac{x-3}{2-x}\)

<=>\(\frac{x-2}{x-2}=3\)

<=> (x - 2) = 3(x - 2)

<=> x - 2 = 3x - 6

<=> -2x = -4

<=> x = 2 (loại) 

Vậy tập nghiệm phương trình S = \(\varnothing\)

h) ĐKXĐ : \(x\ne7\)

Khi đó \(\frac{1}{7-x}=\frac{x-8}{x-7}-8\)

<=> \(\frac{x-7}{x-7}=8\)

<=> x - 7 = 8(x - 7)

<=> x - 7 = 8x - 56

<=> 7x = 49

<=> x = 7 (loại)

Vậy tập nghiệm phương trình S = \(\varnothing\)

i) ĐKXĐ : \(x\ne0;x\ne6\)

Ta có : \(\frac{x+6}{x}=\frac{1}{2}+\frac{15}{2\left(x-6\right)}\)

<=> \(\frac{x+6}{x}-\frac{15}{2\left(x-6\right)}=\frac{1}{2}\)

<=> \(\frac{2\left(x+6\right)\left(x-6\right)}{2x\left(x-6\right)}-\frac{15x}{2x\left(x-6\right)}=\frac{1}{2}\)

<=> \(\frac{2x^2-72-15x}{2x\left(x-6\right)}=\frac{1}{2}\)

<=> 4x2 - 144 - 30x = 2x(x - 6) 

<=> 2x2 - 18x - 144 = 0

<=> x2 - 9x - 72 = 0

<=> x2 - 9x + 81/4 - 72- 81/4 = 0

<=> \(\left(x-\frac{9}{2}\right)^2-\frac{369}{4}=0\)

<=> \(\left(x-\frac{9}{2}+\sqrt{\frac{369}{4}}\right)\left(x-\frac{9}{2}-\sqrt{\frac{369}{4}}\right)=0\)

<=> \(\orbr{\begin{cases}x=\frac{9}{2}-\sqrt{\frac{369}{4}}\\x=\frac{9}{2}+\sqrt{\frac{369}{4}}\end{cases}}\)(tm)

Vậy x \(\in\left\{\frac{9}{2}-\sqrt{\frac{369}{4}};\frac{9}{2}+\sqrt{\frac{369}{4}}\right\}\)

NV
26 tháng 2 2020

1. \(x^2\left(x+1\right)+x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow x+1=0\Rightarrow x=-1\)

2. \(\left(x-2\right)\left(6x+2\right)+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)\left(6x+2+x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right).7x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\7x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

NV
26 tháng 2 2020

3.

\(x^2-5x+6=0\)

\(\Leftrightarrow x^2-2x-3x+6=0\)

\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

4.

\(x^2-x-6=0\)

\(\Leftrightarrow x^2+2x-3x-6=0\)

\(\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)