K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2021

A=x(x-1)+(x+y)(y-x)

=x2-x+y2-x2

=y2-x

#H

1 tháng 8 2021

Trả lời:

A = x ( x - 1 ) + ( x + y ) ( y - x )

= x2 - x + y2 - x2

= y2 - x

14 tháng 8 2023

a) Ta có x.y = 6 và x > y. Với x > y, ta có thể giải quyết bài toán bằng cách thử các giá trị cho x và tìm giá trị tương ứng của y. - Nếu x = 6 và y = 1, thì x.y = 6. Điều này không thỏa mãn x > y. - Nếu x = 3 và y = 2, thì x.y = 6. Điều này thỏa mãn x > y. Vậy, một giải pháp cho phương trình x.y = 6 với x > y là x = 3 và y = 2. b) Ta có (x-1).(y+2) = 10. Mở ngoặc, ta có x.y + 2x - y - 2 = 10. Từ phương trình ban đầu (x.y = 6), ta có 6 + 2x - y - 2 = 10. Simplifying the equation, we get 2x - y + 4 = 10. Tiếp tục đơn giản hóa, ta có 2x - y = 6. c) Ta có (x + 1).(2y + 1) = 12. Mở ngoặc, ta có 2xy + x + 2y + 1 = 12. Từ phương trình ban đầu (x.y = 6), ta có 2(6) + x + 2y + 1 = 12. Simplifying the equation, we get 12 + x + 2y + 1 = 12. Tiếp tục đơn giản hóa, ta có x + 2y = -1. Vậy, giải pháp cho các phương trình là: a) x = 3, y = 2. b) x và y không có giá trị cụ thể. c) x và y không có giá trị cụ thể.

14 tháng 8 2023

e phải tách ra nhé 

16 tháng 12 2022

\(Q=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{x^2+y^2}{\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+2x^2+2y^2}{2\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{2x^2+2y^2+4xy}{2\left(x-y\right)\left(x+y\right)}=\dfrac{2\left(x+y\right)^2}{2\left(x-y\right)\left(x+y\right)}=\dfrac{x+y}{x-y}\)

22 tháng 10 2023

a: \(x+\dfrac{3}{9}=\dfrac{7}{6}\cdot\dfrac{2}{3}\)

=>\(x+\dfrac{1}{3}=\dfrac{14}{18}=\dfrac{7}{9}\)

=>\(x=\dfrac{7}{9}-\dfrac{1}{3}=\dfrac{7}{9}-\dfrac{3}{9}=\dfrac{4}{9}\)

b: \(x-\dfrac{2}{3}=\dfrac{1}{8}:\dfrac{5}{4}\)

=>\(x-\dfrac{2}{3}=\dfrac{1}{8}\cdot\dfrac{4}{5}=\dfrac{1}{10}\)

=>\(x=\dfrac{1}{10}+\dfrac{2}{3}=\dfrac{3+20}{30}=\dfrac{23}{30}\)

4 tháng 5 2024

TThế giới oi oi oi 

22 tháng 5 2023

(y + 6x)/y

= (3x + 6x)/(3x)

= (9x)/(3x)

= 3   (1)

y/x = 3x/x = 3   (2)

Từ (1) và (2) suy ra

(y + 6x)/y = y/x (cùng bằng 3)

22 tháng 5 2023

bn ơi, đề bảo là từ biểu thức c/m y=3x chứ hk phải từ y=3x c/m biểu thức đúng, do mik ghi chx rõ đề, mik cảm mơn ạ

17 tháng 1 2021

\(2xy+x+2y=13\\ \Rightarrow2xy+x+2y+1-1=13\\ \Rightarrow\left(2xy+2y\right)+\left(x+1\right)=13+1\\ \Rightarrow2y\left(x+1\right)+\left(x+1\right)=14\\ \Rightarrow\left(x+1\right)\left(2y+1\right)=14\\ \Rightarrow\left(x+1\right);\left(2y+1\right)\inƯ\left(14\right)\\ \Rightarrow\left(x+1\right);\left(2y+1\right)\in\left\{-14;-7;-2;-1;1;2;7;14\right\}\)

\(x+1\)\(-14\)\(-7\)\(-2\)\(-1\)\(1\)\(2\)\(7\)\(14\)
\(2y+1\)\(-1\)\(-2\)\(-7\)\(-14\)\(14\)\(7\)\(2\)\(1\)
\(x\)\(-15\)\(-8\)\(-3\)\(-2\)\(0\)\(1\)\(6\)\(13\)
\(y\)\(-1\)\(-\dfrac{3}{2}\)\(-4\)\(-\dfrac{15}{2}\)\(\dfrac{13}{2}\)\(3\)\(\dfrac{1}{2}\)\(0\)

Vì \(x,y\in N\Rightarrow\left(x;y\right)=\left(0;\dfrac{13}{2}\right),\left(1;3\right),\left(6;\dfrac{1}{2}\right),\left(13;0\right)\)

Vậy \(\left(x;y\right)=\left(0;\dfrac{13}{2}\right),\left(1;3\right),\left(6;\dfrac{1}{2}\right),\left(13;0\right)\)

 

17 tháng 1 2021

Không có mô tả.

9 tháng 9 2021

đề đâu bạn

9 tháng 9 2021

\(\Rightarrow x+3\ge4\\ \Rightarrow x\ge1\)

10 tháng 9 2016

dùng tính chất tỉ lệ thức: a/b = c/d = e/f = (a+b+c)/(b+d+f) (có b+d+f # 0) 
* trước tiên ta xét trường hợp x+y+z = 0 có 
x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = 0 => x = y = z = 0 
* xét x+y+z = 0, tính chất tỉ lệ thức: 
x+y+z = x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = (x+y+z)/(2x+2y+2z) = 1/2 
=> x+y+z = 1/2 và: 
+ 2x = y+z+1 = 1/2 - x + 1 => x = 1/2 
+ 2y = x+z+1 = 1/2 - y + 1 => y = 1/2 
+ z = 1/2 - (x+y) = 1/2 - 1 = -1/2 

Vậy có căp (x,y,z) thỏa mãn: (0,0,0) và (1/2,1/2,-1/2) 

10 tháng 9 2016

dùng tính chất tỉ lệ thức: a/b = c/d = e/f = (a+b+c)/(b+d+f) (có b+d+f # 0) 
* trước tiên ta xét trường hợp x+y+z = 0 có 
x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = 0 => x = y = z = 0 
* xét x+y+z = 0, tính chất tỉ lệ thức: 
x+y+z = x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = (x+y+z)/(2x+2y+2z) = 1/2 
=> x+y+z = 1/2 và: 
+ 2x = y+z+1 = 1/2 - x + 1 => x = 1/2 
+ 2y = x+z+1 = 1/2 - y + 1 => y = 1/2 
+ z = 1/2 - (x+y) = 1/2 - 1 = -1/2 

Vậy có căp (x,y,z) thỏa mãn: (0,0,0) và (1/2,1/2,-1/2) 

11 tháng 7 2018

1) \(x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)\)

\(=x\left(x^2-16\right)\)

\(=x^3-16x-\left(x^2+1\right)\left(x^2-1\right)\)

\(=x^3-16x-x^4+1\)

b) \(7x\left(4y-x\right)+4y\left(y-7x\right)-2\left(2y^2-3.5x\right)\)

\(=28xy-7x^2+4y\left(y-7x\right)-2\left(2y^2-3.5x\right)\)

\(=28xy-7x^2+4y^2-28xy-4y^2+7x\)

\(=-7x^2+7x\)

c) \(\left(3x-1\right)\left(2x-5\right)-4\left(2x^2-5x+2\right)\)

\(=6x^2-17x+5-4\left(2x^2-5x+2\right)\)

\(=6x^2-17x+5-8x^2+20x-8\)

\(=-2x^2+3x-3\)

11 tháng 7 2018

a)  x(x+4)(x-4)-(x2+1)(x2-1)

=>x(x2-42)-(x4-12)

=>x3-16x-x4+1

=>-x4-x3-15x

b)  7x(4y-x)+4y(y-7x)-2(2y2-3.5x)

=>28xy-7x2+4y2-28xy-4y2+30x

=>-7x2+30x

c)  (3x+1)(2x-5)-4(2x2-5x+2)

=>6x2-15x+2x-5-8x2+20x-8

=>-2x2+7x-13