K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2014

 

1) vì M là trung điểmcủa BC nên MB=MC

do MA=MD và 2 góc AMC=BMD (đối đỉnh)

vậy 2tam giácAMC=BMD  ( c,g,c)

2) do 2tam giác AMC=BMD nên AB=BD (2canh tương ứng)

3) dohình bình hành ACDB có 2 đường céo AD=BC và cắt nhau tại trung điểm của mỗi đường

và có góc vuông tại A => ACDB là hình chữ nhật => AB vuông góc BD

4) M là trung điểm BC => AM là trung tuyến tam giác ABC=> AM= 1/2 BC

 

 

9 tháng 5 2018

sao hk vẽ hih

`

16 tháng 12 2021

a: Xét ΔAMC và ΔDMB có 

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)

MC=MB

Do đó: ΔAMC=ΔDMB

a: Xét ΔAMC và ΔDMB có

MA=MD

góc AMC=góc DMB

MC=MB

=>ΔAMC=ΔDMB

b: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

mà góc BAC=90 độ

nên ABDC là hình chữ nhật

=>AB vuông góc BD

c: ΔABC vuông tại A có AM là trung tuyến

nên AM=1/2BC

12 tháng 12 2016

a)Chứng minh tam giác AMC = tam giác DMB?

Xét tam giác AMC và tam giác DMB có:

- Góc BMD = góc AMC (đối đỉnh)

-BM = MC (gt)

-MA = MD (gt)

=> Tam giác AMC = tam giác DMB(g.c.g)

b)Chứng minh AC = BD?

Ta có: tam giác AMC = tam giác DMB (cmt)

=>BD=AC

c)Chứng minh AB vuông góc với BD?

Xét tam giác AMC và tam giác DMB có:

-Góc DMB = góc ABC (so le trong)

=>BD//AC

Mà AB vuông góc với AC

=> AB vuông góc với BD

d) Chứng minh AM=1/2 BC?

Xát tam giác ABC vuông tại A có:

M là trung điểm của BC(gt)

=>AM là đường trung tuyến

=>AM=1/2 BC (tính chất đường trung tuyền trong 1 tam giác vuông)

12 tháng 12 2016

ai giúp vs

 

 

a: Xét ΔAMC và ΔDMB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)

MC=MB

Do đó: ΔAMC=ΔDMB

b: Xét tứ giác ABDC có

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: AC//BD

a: Xét ΔABM và ΔACM có 

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

b: Xét ΔMBA và ΔMCD có 

MB=MC

\(\widehat{AMB}=\widehat{DMC}\)

MA=MD

Do đó: ΔMBA=ΔMCD

7 tháng 3

loading...  

a) Do M là trung điểm của BC (gt)

⇒ MB = MC

Xét ∆AMB và ∆DMC có:

AM = DM (gt)

∠AMB = ∠DMC (đối đỉnh)

MB = MC (cmt)

⇒ ∆AMB = ∆DMC (c-g-c)

⇒ ∠MAB = ∠MDC (hai góc tương ứng)

Lại có:

∠MAC + ∠MAB = 90⁰ (∆ABC vuông tại A)

⇒ ∠MAC + ∠MDC = 90⁰

⇒ ∠DAC + ∠ADC = 90⁰

∆CDA có:

∠DAC + ∠CDA + ∠ACD = 180⁰ (tổng ba góc trong ∆ACD)

⇒ ∠ACD = 180⁰ - (∠DAC + ∠CDA)

= 180⁰ - 90⁰

= 90⁰

⇒ ∆ACD vuông tại C

Do ∆AMB = ∆DMC (cmt)

⇒ AB = CD (hai cạnh tương ứng)

Xét hai tam giác vuông: ∆ABC và ∆CDA có:

AC là cạnh chung

AB = CD (cmt)

⇒ ∆ABC = ∆CDA (hai cạnh góc vuông)

b) Do ∆ABC = ∆CDA (cmt)

⇒ BC = AD (hai cạnh tương ứng)

Do AM = DM (gt)

⇒ AM = DM = ½AD

Mà AD = BC (cmt)

⇒ AM = ½BC

a: Xét tứ giác ABDC có 

M là trung điểm của AD

M là trung điểm của BC

DO đó: ABDC là hình bình hành

Suy ra: AB=DC; AC=BD

Xét ΔABC và ΔCDA có 

AB=CD

BC=DA

AC chung

Do đó: ΔABC=ΔCDA

b: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên AM=1/2BC