Giá trị của biểu thức (có vô hạn dấu căn) là....
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A2 = \(2+\sqrt{2+\sqrt{2+\sqrt{2.......}}}\)
A2 = 2 + A
=> A2 - A - 2 = 0
=> A2 - 2A + A - 2 = 0
=> A(A - 2) + (A - 2) = 0
=> (A - 2)(A+ 1) = 0 => A = 2 hoặc A = -1
Mà A > 0 nên A = 2
Đặt \(A=\left(\sqrt{2+\sqrt{2+\sqrt{2+...}}}\right)\) nên \(A^2=2+\left(\sqrt{2+\sqrt{2+...}}\right)\) ( có vô hạn dấu căn)
hay \(A^2=2+A\Leftrightarrow A^2-A-2=0\Leftrightarrow\left(A+1\right)\left(A-2\right)=0\)
Vì A>0 nên A=2
tick nha
Đặt A = \(\sqrt{2+\sqrt{2+....}}\)
A^2 = 2 + \(\sqrt{2+\sqrt{2+....}}\)
A^2 = 2 + A
=> A^2 - A - 2 = 0
=> ( A + 1 )(A-2) = 0
=> A = 2 hoặc A = -1 ( loại A > 0 )
Vậy A = 2
Đặt \(A=\sqrt{2+\sqrt{2+\sqrt{2+...}}}\) . Nhận xét : A > 0
\(\Rightarrow A^2=2+\sqrt{2+\sqrt{2+\sqrt{2+...}}}=A+2\)
\(\Rightarrow A^2-A-2=0\Leftrightarrow\left(A-2\right)\left(A+1\right)=0\Leftrightarrow\orbr{\begin{cases}A=2\left(\text{nhận}\right)\\A=-1\left(\text{loại}\right)\end{cases}}\)
Vậy A = 2
Đặt \(A=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...}}}}}\)
Nhận xét : A > 0
Ta có : \(A^2=2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+....}}}}=A+2\)
\(\Leftrightarrow A^2-A-2=0\Leftrightarrow\left(A-2\right)\left(A+1\right)=0\)
Vì A > 0 nên ta chọn A = 2
Vậy giá trị của biểu thức là : A = 2
Đặt A= biểu thức đó
=>A^2= 2+ A
=>A^2-A-2=0
Giải PT tìm ra A
p/s: lấy A>0 thôi