tim x thuoc Q , biet :
a, (x+1).(x+2)<0
b, (x-2).(x+2/3)>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x-1).(x+2) < 0
TH1: x - 1< 0
x < 1
TH2: x + 2 < 0
x < -2
b) ( x +3).(x-5) > 0
TH1: x + 3 > 0
x> -3
TH2: x - 5 > 0
x > 5
KL: x > 5
\(\left(x+1\right)\left(x+2\right)< 0\)
Mà x+1 < x+2
\(\Rightarrow\begin{cases}x+1< 0\\x+2>0\end{cases}\)
\(\Rightarrow\begin{cases}x>1\\x< 2\end{cases}\)
\(\Rightarrow x\in\varnothing\)
b)
\(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
(+) Với \(\left(x-2\right);\left(x+\frac{2}{3}\right)\) cùng dương
\(\Rightarrow\begin{cases}x+2>0\\x+\frac{2}{3}>0\end{cases}\)
\(\Rightarrow\begin{cases}x>-2\\x>-\frac{2}{3}\end{cases}\)
=> x > - 2
(+) Với \(\left(x-2\right);\left(x+\frac{2}{3}\right)\) cùng âm
\(\Rightarrow\begin{cases}x+2< 0\\x+\frac{2}{3}< 0\end{cases}\)
\(\Rightarrow\begin{cases}x< -2\\x< -\frac{2}{3}\end{cases}\)
=> x < - 2
Vậy x>2 ; x< - 2
a ) \(\left(x+1\right).\left(x-2\right)< 0\)
\(=x.\left(x-2\right)+1.\left(x-2\right)< 0\)
\(=x.\left(x-2\right)+\left(x-2\right)< 0\)
\(\Rightarrow x\in Z\)
\(\Rightarrow x>2\)
b ) \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
\(=x.\left(x+\frac{2}{3}\right)-2.\left(x+\frac{2}{3}\right)\)
\(\Rightarrow\left(x+\frac{2}{3}\right)\in\)số nguyên
Nên \(x\in\) phấn số
Ta có bảng xét dấu
x -1 2
x+1 - 0 + I +
x-2 - I + 0 +
(x+1)(x-2) - 0 + 0 +
=> (x+1)(x-2) < 0 khi x<-1 hoặc -1<x<2
a)=>x-1;x-3 \(\in\)Ư(-5)={-1;-5;1;5}
còn lại thử từng TH nhé
b)\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
c)=>x2-4;x2-19 trái dấu
Ta có:x^2-4-(x^2-19)=x^2-4-x^2+19=15 >0
\(\Rightarrow\orbr{\begin{cases}x^2-4>0\\x^2-19< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x^2>4\\x^2< 19\end{cases}}\)
Ta có:4<x^2<19
=>x^2\(\in\){9;16}
=>x\(\in\){3;4}
(x - 3).(x + 2) < 0
=> x - 3 và x + 2 trái dấu
Mà x + 2 > x - 3
=> x + 2 > 0 => x > -2
x - 3 < 0 => x < 3
=> -2 < x < 3, mà x thuộc Z => x \(\in\) {-1;0;1;2}
a/ Áp dụng tính chất phân phối ta được:
\(\left(x+1\right)\left(x+2\right)\)
\(=x^2+x+2x+2\)
\(=x^2+2x+1^2+x+1\)
\(=\left(x+1\right)^2+x+1\)
Mà \(x< \left(x+1\right)^2\)
\(\Rightarrow\left(x+1\right)^2+x+1>0\)
=> Biểu thức trên lớn hơn 0
=> Không có kết quả (Sai đề)
b/ Áp dụng tính chất phân phối ta được:
\(\left(x-2\right)\left(x+\frac{2}{3}\right)\)
\(=x^2-2x+\frac{2}{3}x-\frac{4}{3}\)
\(=x^2-2x+1+\frac{2}{3}x-\frac{1}{3}\)
\(=\left(x-1\right)^2+\frac{2}{3}x-\frac{1}{3}\)
\(=\left(x-1\right)^2+\frac{1}{3}\left(2x-1\right)\)
Mà \(\left(x-1\right)^2\ge0\)
=> Để thỏa mãn đề bài cần \(\frac{1}{3}\left(2x-1\right)>0\)
=> \(2x>1\Rightarrow x>\frac{1}{2}\)
a ) \(\left(x+1\right).\left(x+2\right)< 0\)
\(=x.\left(x+2\right)+1.\left(x+2\right)< 0\)
\(=x.\left(x-2\right)+\left(x+2\right)< 0\)
\(\Rightarrow x\in Z\)
\(\Rightarrow x>2\)