K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2016

Tham khảo: Cho p là số nguyên tố lớn hơn 3. CMR (p – 1)(p + 1) chia hết cho 24

20 tháng 7 2016

a) Đặt phân số trên là M

Để M là số tự nhiên thì

19n+7 chia hết cho 7n+11

<=>7(19n+7)-19(7n+11) chia hết cho 7n+11

<=>133n+49-133n-209 chia hết cho 7n+11

<=>-160 chia hết cho 7n+11

\(\Leftrightarrow7n+11\in\left\{1;2;4;5;8;10;16;20;32;40;80;160;-1;-2;-4;-5;-8;-10;-16;-20;-32;-40;-80;-160\right\}\)

Mà n là số tự nhiên

=> 7n+11\(\ge\)11

Vậy các giá trị của 7n+11 là 16;20;32;48;80;160

Mặt khác 7n+11 chia 7 dư 4

=> Các giá trị 16;20;48;80;160 bị loại vì chia 7 có số dư \(\ne\)4

=> 7n+11=32

=>n=3

Vậy khi n=3 thì M=2

b)   P là số nguyên tố lớn hơn 3

=> P không chia hết cho 2 cho 3 

Ta có :P không chia hết cho 2

=> P-1 và P+1 là 2 số chẵn liên tiếp => (P-1)(P+1) chia hết cho 8 (1)

Mặt khác vì  P không chia hết cho 3

=>p=3k+1 hoặc 3k+2

Nếu P= 3k +1

=>P-1 =3k +0chia hết cho 3 => (P-1)(P+1) chia hết cho 3

Nếu P= 3k+2

=> P+1=3k +3 chia hết cho 3 => (P-1)(P+1) chia hết cho 3

=> Với mọi p là só nguyên tố lớn hơn 3 thì (p+1)(p-1) chia hết cho 3 (2)

Từ (1)(2)=>(P-1)(P+1) chia hết cho 8 và 3

Mà (8;3)=1

=>(P-1)(P+1) chia hết cho 8x3=24 (đpcm)