2x2(a+b+c) - 4xy (a+b+c)
6 (a+b)2x2y + 3(a+b)xy-18(a+b)xy2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
A − B = 3 x 3 y 2 + 2 x 2 y − x y − 4 x y − 3 x 2 y + 2 x 3 y 2 + y 2 = 3 x 3 y 2 + 2 x 2 y − x y − 4 x y + 3 x 2 y − 2 x 3 y 2 − y 2 = 3 x 3 y 2 − 2 x 3 y 2 + 2 x 2 y + 3 x 2 y + ( − x y − 4 x y ) − y 2 = x 3 y 2 + 5 x 2 y − 5 x y − y 2
Chọn đáp án C
Ta có
A + B = 3 x 3 y 2 + 2 x 2 y − x y + 4 x y − 3 x 2 y + 2 x 3 y 2 + y 2 = 3 x 3 y 2 + 2 x 3 y 2 + 2 x 2 y − 3 x 2 y + ( − x y + 4 x y ) + y 2 = 5 x 3 y 2 − x 2 y + 3 x y + y 2
Chọn đáp án D
\(A=5x^2y-xy^2+4xy+6\) bậc : 3
a)\(B=-5x^2y+xy^2-4xy-6\)
b)\(=>C=-2xy+1-5x^2y+xy^2-4xy-6\)
\(C=-5x^2y+xy^2-6xy-5\)
Câu 11. Giá trị của biểu thức - 2x2 + xy2 tại x= -1 ; y = - 4 là:
A. - 2 B. - 18 C. 3 D. 1
Câu 12: 2. Thu gọn đa thức P = -2x2y – 7xy2 + 3x2y + 7xy2 được kết quả.
A. P = -5x2y - 14 xy2 B. P = x2y C. P = x2y + 14 xy2 D. P = -x2y
Câu 13: Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh là:
A. 5; 5; 7 B. 4; 5; 6 C. 10; 8; 6 D. 2; 3; 4
Câu 14: ABC và DEF có AB = ED, BC = EF. Thêm điều kiện nào sau đây để ABC= DEF?
A. = B. = C. AB = AC D. AC = DF
Câu 15: MNP cân tại P. Biết góc N có số đo bằng 500. Số đo góc P bằng:
A. 800 B. 1000 C. 500 D. 1300
Câu 16: HIK vuông tại H có các cạnh góc vuông là 3cm; 4cm. Độ dài cạnh huyền IK bằng
A. 8cm B. 16cm C.5cm D. 12cm
Câu 17: Cho tam giác ABC bằng tam giác DEF, góc tương ứng với góc C là
A. Góc D B. Góc F C. Góc E D. Góc B
Câu 18: Cho tam giác ABC vuông tại A. Ta có:
A. = - B. + = 900
C. Hai góc B và C kề bù. D. Hai góc B và C bù nhau
Câu 19: Tìm x trong hình vẽ sau biết AB // CD
A. 600 B. 700 C. 500 D. 800
Câu 20: Tìm tam giác cân trong hình dưới đây:
A. ABE B. CAD
C. CAB và EAD D. Không có tam giác cân nào trong hình vẽ trên.
a) \(\left(x+2y\right)^2-\left(x-y\right)^2=\left(x+2y+x-y\right)\left(x+2y-x+y\right)\)
\(=\left(2x+y\right).3y\)
b) \(\left(x+1\right)^3+\left(x-1\right)^3\)
\(=\left(x+1+x-1\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(x-1\right)+\left(x-1\right)^2\right]\)
\(=2x\left[\left(x+1\right)^2-\left(x^2-1\right)+\left(x-1\right)^2\right]\)
c) \(9x^2-3x+2y-4y^2\)
\(=9x^2-4y^2-3x+2y\)
\(=\left(3x-2y\right)\left(3x+2y\right)-\left(3x-2y\right)\)
\(=\left(3x-2y\right)\left[3x+2y-1\right]\)
d) \(4x^2-4xy+2x-y+y^2\)
\(=4x^2-4xy+y^2+2x-y\)
\(=\left(2x-y\right)^2+2x-y\)
\(=\left(2x-y\right)\left(2x-y+1\right)\)
e) \(x^3+3x^2+3x+1-y^3\)
\(=\left(x+1\right)^3-y^3\)
\(=\left(x+1-y\right)\left[\left(x+1\right)^2+y\left(x+1\right)+y^2\right]\)
g) \(x^3-2x^2y+xy^2-4x\)
\(=x\left(x^2-2xy+y^2\right)-4x\)
\(=x\left(x-y\right)^2-4x\)
\(=x\left[\left(x-y\right)^2-4\right]\)
\(=x\left(x-y+2\right)\left(x-y-2\right)\)
a) (x + 2y)² - (x - y)²
= (x + 2y - x + y)(x + 2y + x - y)
= 3y(2x + y)
b) (x + 1)³ + (x - 1)³
= (x + 1 + x - 1)[(x + 1)² - (x + 1)(x - 1) + (x - 1)²]
= 2x(x² + 2x + 1 - x² + 1 + x² - 2x + 1)
= 2x(x² + 3)
c) 9x² - 3x + 2y - 4y²
= (9x² - 4y²) - (3x - 2y)
= (3x - 2y)(3x + 2y) - (3x - 2y)
= (3x - 2y)(3x + 2y - 1)
d) 4x² - 4xy + 2x - y + y²
= (4x² - 4xy + y²) + (2x - y)
= (2x - y)² + (2x - y)
= (2x - y)(2x - y + 1)
e) x³ + 3x² + 3x + 1 - y³
= (x³ + 3x² + 3x + 1) - y³
= (x + 1)³ - y³
= (x + 1 - y)[(x + 1)² + (x + 1)y + y²]
= (x - y + 1)(x² + 2x + 1 + xy + y + y²)
g) x³ - 2x²y + xy² - 4x
= x(x² - 2xy + y² - 4)
= x[(x² - 2xy + y²) - 4]
= x[(x - y)² - 2²]
= x(x - y - 2)(x - y + 2)
Thu gọn đa thức
a,A=2x2 +x-\(\dfrac{1}{2}\)x2+5x+3
b,B=5xy+\(\dfrac{1}{2}\)x2y-\(\dfrac{2}{3}\)xy+2x2y
a: \(A=\dfrac{3}{2}x^2+6x+3\)
b: \(B=5xy-\dfrac{2}{3}xy+\dfrac{1}{2}x^2y+2x^2y=\dfrac{5}{2}x^2y+\dfrac{13}{3}xy\)
a) \(2x^2+x-\dfrac{1}{2}x^2+5x+3\)\(\)
= \(\left(2x-\dfrac{1}{2}x^2\right)+\left(x+5x\right)+3\)
= \(\dfrac{3}{2}x^2+6x+3\)
Vậy A = \(\dfrac{3}{2}x^2+6x+3\)
a. 3xy( 4x + y - \(\dfrac{4}{3}\) )
b. 2x2( 3x + 1 )
c. (2x + 3 )( x - y )
d. xy( 1 - x )( x - 1 )
e. 6( 2x + 1 )( x + y )
giải giúp mình theo cách dùng nhân tử chung
a) Ta có: \(2x^2\left(a+b+c\right)-4xy\left(a+b+c\right)\)
\(=2x\left(a+b+c\right)\cdot x-2x\left(a+b+c\right)\cdot2y\)
\(=2x\left(a+b+c\right)\left(x-2y\right)\)
b) Ta có: \(6\left(a+b\right)^2x^2y+3\left(a+b\right)xy-18\left(a+b\right)xy^2\)
\(=3\left(a+b\right)xy\left[2\left(a+b\right)x+1-6y\right]\)
\(=3xy\left(a+b\right)\left(2ax+2bx+1-6y\right)\)