Tìm x , biết :
a) 23x+1 = 32x
b) 3x+2 = 273x-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x = 16 <=>x=8
b) 3x+1 = 9x <=>9x-3x=1
<=>6x=1 <=>x=1/6
c) 23x+2 = 4x+5 <=>23x-4x=5-2
<=>19x=3 <=>x=3/19
d) 32x-1 = 243 <=>32x=244
<=>x=61/8
a/ 2x=16
x=8
b/ 3x+1=9x
3x-9x=-1
-6x=-1
x=1/6
c/ 23x+2=4x
23x-4x=-2
19x=-2
x=-2/19
d/ 32x-1=243
32x=244
x=61/8
a) x3 - 3x2 + 3x - 1 = 0
<=>x3-x2-2x2-2x-x-1=0
<=>x2(x-1)-2x(x-1)+(x-1)=0
<=>(x2-2x+1)(x-1)=0
<=>(x-1)(x-1)(x-1)=0
<=>(x-1)3=0
<=>x=1
\(1,\\ a,2^x=16=2^4\Rightarrow x=4\\ b,3^{x+1}=9^x=3^{2x}\\ \Rightarrow x+1=2x\Rightarrow x=1\\ c,2^{3x+2}=4^{x+5}=2^{2\left(x+5\right)}\\ \Rightarrow3x+2=2x+10\Rightarrow x=8\\ d,3^{2x-1}=243=3^5\\ \Rightarrow2x-1=5\Rightarrow x=3\\ 2,\\ a,2^{225}=8^{75}< 9^{75}=3^{150}\\ b,2^{91}=\left(2^{13}\right)^7=8192^7>3125^7=\left(5^5\right)^7=5^{35}\\ c,99^{20}=\left(99^2\right)^{10}< \left(99\cdot101\right)^{10}=9999^{10}\\ 3,\\ a,12^8\cdot9^{12}=2^{16}\cdot3^8\cdot3^{24}=2^{16}\cdot3^{32}=\left(2\cdot3^2\right)^{16}=18^{16}\\ b,75^{20}=\left(3\cdot5^2\right)^{20}=3^{20}\cdot5^{40}=\left(3^{20}\cdot5^{10}\right)\cdot5^{30}=\left(3^2\cdot5\right)^{10}\cdot5^{30}=45^{10}\cdot5^{30}\)
Bài 1:
a) \(\Rightarrow2^x=2^4\Rightarrow x=4\)
b) \(\Rightarrow3^{x+1}=3^{2x}\Rightarrow x+1=2x\Rightarrow x=1\)
c) \(\Rightarrow2^{3x+2}=2^{2x+10}\Rightarrow3x+2=2x+10\Rightarrow x=8\)
d) \(\Rightarrow3^{2x-1}=3^5\Rightarrow2x-1=5\Rightarrow x=3\)
Bài 2:
a) \(2^{225}=\left(2^3\right)^{75}=8^{75}< 9^{75}=\left(3^2\right)^{75}=3^{150}\)
b) \(2^{91}=\left(2^{13}\right)^7=8192^7>3125^7=\left(5^5\right)^7=5^{35}\)
c) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)
Bài 3:
a) \(12^8.9^{12}=\left(4.3\right)^8.9^{12}=4^8.3^8.9^{12}=2^{16}.9^4.9^{12}=2^{16}.9^{16}=\left(2.9\right)^{16}=18^{16}\)
b) \(75^{20}=\left(75^2\right)^{10}=5625^{10}=\left(45.125\right)^{10}=45^{10}.125^{10}=45^{10}.5^{30}\)
b) \(x^3-5x^2+4x-20=0\)
\(=\left(x^3-5x^2\right)+\left(4x-20\right)=0\)
\(=x^2\left(x-5\right)+4\left(x-5\right)=0\)
\(=\left(x^2+4\right)\left(x-5\right)=0\)
\(x^2\ge0\)
\(\Rightarrow x^2+4\ge4>0\)
\(\Rightarrow x-5=0\)
\(\Rightarrow x=5\)
`#3107.101107`
a)
\(5\left(x-1\right)^3=40\\\Rightarrow\left(x-1\right)^3=40\div5\\ \Rightarrow\left(x-1\right)^3=8\\ \Rightarrow\left(x-1\right)^3=2^3\\ \Rightarrow x-1=2\\ \Rightarrow x=2+1\\ \Rightarrow x=3\)
Vậy, `x = 3`
b)
\(3^{2x+1}+9^x=324?\\ \Rightarrow3^{2x}\cdot3+3^{2x}=324\\ \Rightarrow3^{2x}\cdot\left(3+1\right)=324\\ \Rightarrow3^{2x}\cdot4=324\\ \Rightarrow3^{2x}=81\\ \Rightarrow3^{2x}=3^4\\ \Rightarrow2x=4\\ \Rightarrow x=2\)
Vậy, `x = 2`
c)
\(5^x-13=3\cdot2^2\\ \Rightarrow5^x-13=12\\ \Rightarrow5^x=12+13\\ \Rightarrow5^x=25\\ \Rightarrow5^x=5^2\\ \Rightarrow x=2\)
Vậy, `x = 2`
d)
\(8^x+2^{3x+1}=192\\ \Rightarrow2^{3x}+2^{3x}\cdot2=192\\ \Rightarrow2^{3x}\left(1+2\right)=192\\ \Rightarrow2^{3x}\cdot3=192\\ \Rightarrow2^{3x}=64\\ \Rightarrow2^{3x}=2^6\\ \Rightarrow3x=6\\ \Rightarrow x=2\)
Vậy, `x = 2.`
a) 23x + 1 = 32x
23x - 32x = -1
-9x = -1
x=-1/-9
x=1/9
b) 3x+2 = 273x-1
3x - 273x = -1 - 2
-270x = -3
x = -3/-270
x=3/270