K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2015

câu 1:

ta có: \(x^2+y^2=4\Leftrightarrow\left(x^2+2xy+y^2\right)-2xy=4\Leftrightarrow\left(x+y\right)^2-2xy=4\Leftrightarrow9-2xy=4\Leftrightarrow-xy=-\frac{5}{2}\)

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=3.\left(4-xy\right)=3\left(4-\frac{5}{2}\right)=\frac{9}{2}\)

câu 2: tương tự ở trên tính xy rồi lắp vào hằng đẳng thức: \(x^3-y^3=\left(x-y\right)\left(x^2+y^2+xy\right)\)

6x = 24

  x = 24 : 6

  x = 4

Vậy x = 4

8 tháng 8 2017

(x+y)^2  =a^2

x^2 +2xy +y^2 =a^2

x^2+y^2 =a^2-2xy =a^2 -2b

x^3 +y^3 = (x+y)(x^2 -xy +y^2)

             =a(a^2-2b-b)

            =a(a^2-3b)

            =a^3- 3ab

(x^2 +y^2)^2=(a^2-2b)^2  ( cái này tính cho x^4 + y^4)

tương tự như câu đầu tiên 

x^5+ y^5 (cái đó mình không biết)

8 tháng 8 2017

sai con khi

4 tháng 8 2016

Ta có:

x+y=6          

=>  (x+y) = 36     

=> x+2xy+ y2 = 36      

=>20+2xy         =36    

=> 2xy             = 16

=> xy               =8

Ta lại có:

x3+y3= (x+y). ( x2 + xy +y2)

         = 6 . (20 + 8)

         = 120 + 48

         = 168

Vậy x3+y3=168  

27 tháng 9 2019

Ta có:

x+y=6          

=>  (x+y)2  = 36     

=> x2 +2xy+ y2 = 36      

=>20+2xy         =36    

=> 2xy             = 16

=> xy               =8

Ta lại có:

x3+y3= (x+y). ( x2 + xy +y2)

         = 6 . (20 + 8)

         = 120 + 48

         = 168

Vậy x3+y3=168  

14 tháng 7 2017

a. Có \(x+y=2\Rightarrow x^2+2xy+y^2=4\Rightarrow x^2+y^2=4-2.\left(-3\right)=10\)

\(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2+y^2\right)^2-2x^2y^2\)

\(=10^2-2.\left(-3\right)^2=82\)

b. Ta có \(x+y=1\Rightarrow x^2+y^2=1-2xy\)

 \(x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)

\(=1.\left(1-2xy-xy\right)+3xy=1\)

Các câu còn lại tương tự

24 tháng 9 2020

Bài 1.

A = x2 + 2xy + y2 = ( x + y )2 = ( -1 )2 = 1

B = x2 + y2 = ( x2 + 2xy + y2 ) - 2xy = ( x + y )2 - 2xy = (-1)2 - 2.(-12) = 1 + 24 = 25

C = x3 + 3xy( x + y ) + y3 = ( x3 + y3 ) + 3xy( x + y ) = ( x + y )( x2 - xy + y2 ) + 3xy( x + y )

                                                                                  = -1( 25 + 12 ) + 3.(-12).(-1)

                                                                                  = -37 + 36

                                                                                  = -1

D = x3 + y3 = ( x3 + 3x2y + 3xy2 + y3 ) - 3x2y - 3xy2 = ( x + y )3 - 3xy( x + y ) = (-1)3 - 3.(-12).(-1) = -1 - 36 = -37

24 tháng 9 2020

Bài 2.

M = 3( x2 + y2 ) - 2( x3 + y3 )

= 3( x2 + y2 ) - 2( x + y )( x2 - xy + y2 )

= 3( x2 + y2 ) - 2( x2 - xy + y2 )

= 3x2 + 3y2 - 2x2 + 2xy - 2y2

= x2 + 2xy + y2

= ( x + y )2 = 12 = 1

2 tháng 7 2017

\(x+y=4\)

\(\Leftrightarrow\left(x+y\right)^2=16\)

\(\Leftrightarrow x^2+y^2+2xy=16\)

\(\Leftrightarrow10+2xy=16\)

\(\Rightarrow xy=3\)

Ta có : \(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=4\left(10-3\right)=28\)

13 tháng 9 2020

Ta có x + y = 4

=> (x + y)2 = 16

=> x2 + y2 + 2xy = 16

=> 2xy = 6

=> xy = 3

Lại có x + y = 4

=> x(x + y) = 4x

=> x2 + xy = 4x

=> x2 - 4x = - xy

=> x2 - 4y = -3

=> x2 - 4x + 4 = 1

=> (x - 2)2 = 1

=> \(\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

Khi x = 3 => y = 1

Khi x = 1 => y = 3

Vậy khi x = 3 ; y = 1=> x3 - y3 = 33 - 13 = 27 - 1 = 26

khi x = 1 ; y = 3 => x3 - y3 = 13 - 33 = 1 - 27 = -26

Vậy x3 - y3 \(\in\left\{\pm26\right\}\)

13 tháng 9 2020

Ta có :
x + y = 2
=> x = 2 - y
Thay x = 2 - y vào biểu thức : x^2 + y^2 = 10
<=> (2 - y)^2 + y^2 = 10
<=> 4 - 4y + y^2 + y^2 = 10
<=> 4 - 4y + 2y^2 = 10
<=> 2.(2 - 2y + y^2) = 10
<=> 2 - 2y + y^2 = 5
<=> y^2 - 2y - 3 = 0
<=> y^2 + y - 3y - 3 = 0
<=> y.(y + 1) - 3.(y + 1) = 0
<=> (y - 3).(y + 1) = 0
<=> y = 3 hoặc y = -1
TH1 : y = 3 => x = - 1
Thay vào biểu thức x^3 + y^3
= - 1 + 3^3 = 26
TH2 : y = - 1 => x = 3
Thay vào biểu thức x^3 + y^3 
= 3^3 - 1 = 26
Vậy giá trị của biểu thức :
x^3 + y^3 = 26

16 tháng 9 2020

a) Ta có x + y = 25

=> (x + y)2 = 625

=> x2 + y2 + 2xy = 625

=> x2 + y2 + 10 = 625

=> x2 +y2 = 615

b) Ta có x + y = 3

=> (x + y)3 = 27

=> x3 + 3x2y + 3xy2 + y3 = 27

=> x3 + y3 + 3xy(x + y) = 27

=> x3 + y3 + 9xy = 27 

Lại có x + y = 3

=> (x + y)2 = 9

=> x2 + y2 + 2xy = 9

=> 2xy = 4

=> xy = 2

Khi đó x3 + y3 + 9xy + 27

=> x3 + y3 + 18 = 27

=> x3 + y3 = 9

c) Ta có x - y = 5

=> (x - y)2 = 25

=> x2 + y2 - 2xy = 25

=> 2xy = -10

=> xy = -5

Khi đó : x3 - y3 = (x - y)(x2 + xy + y2) = 5(15 - 5) = 5.10 = 50

16 tháng 9 2020

Bài 4.

a) x2 + y2 = x2 + 2xy + y2 - 2xy

= ( x2 + 2xy + y2 ) - 2xy

= ( x + y )2 - 2xy

= 252 - 2.136

= 625 - 272

= 353

b) x + y = 3

⇔ ( x + y )2 = 9

⇔ x2 + 2xy + y2 = 9

⇔ 5 + 2xy = 9 ( gt x2 + y2 = 5 )

⇔ 2xy = 4

⇔ xy = 2

x3 + y3 = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2

= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 )

= ( x + y )3 - 3xy( x + y )

= 33 - 3.2.3

= 27 - 18

= 9