K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2016

A B C H

a)Xét tam giác HAB và tam giác ABC

góc ABC : chung

góc BHA=góc BAC=90o

Suy ra: tam giác HAB ~ tam giác ABC (g-g)

b)Ta có: tam giác ABC vuông tại A

=>AC2=BC.HC (hệ thức lượng)

c)Ta có: \(BC^2=AB^2+AC^2=15^2+20^2=625\Rightarrow BC=25\left(cm\right)\)

Ta lại có: \(AC^2=BC.HC\left(HTL\right)\Rightarrow HC=\frac{AC^2}{BC}=\frac{20^2}{25}=16\left(cm\right)\)

11 tháng 7 2016

Toán lớp 8

a) Xét ΔHBA và ΔABC có:

∠BHA = ∠BAC = 900 ( GT)

Góc B: Chung

Vậy ΔHBA  ~ ΔABC (g.g)

b) Xét ΔHAC và ΔABC.có:

∠AHC = ∠BAC =900 ( GT)

Góc C : Chung

Vậy ΔHAC ~ ΔABC (g.g)

Suy ra:

2016-05-05_085731

c) Áp dụng định lí Pytago cho vuông tại A, ta có:

2016-05-05_085825

26 tháng 4 2019

A B C H

a) Xét tam giác HBA và tam giác ABC :

\(\widehat{AHB}=\widehat{BAC}\left(=90^0\right)\)

\(\widehat{ABC}\)chung

=> tam giác HBA \(~\)tam giác ABC ( đpcm )

b) Chứng minh tương tự câu a) ta có tam giác ABC \(~\)tam giác HAC

\(\Rightarrow\frac{AC}{HC}=\frac{BC}{AC}\)

\(\Rightarrow AC^2=HC\cdot BC\)( đpcm )

c) Áp dụng đính lý Pytago vào tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\)( cm )

Từ câu b) ta có : \(HC=\frac{AC^2}{BC}=\frac{20^2}{25}=16\)

Vậy....

a: Xét ΔHAC vuông tại H và ΔABC vuông tại A có

góc C chung

Do đó: ΔHAC\(\sim\)ΔABC

b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)

\(HC=\dfrac{AC^2}{BC}=\dfrac{16^2}{20}=12.8\left(cm\right)\)

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: BC=căn 15^2+20^2=25cm

AH=15*20/25=12cm

31 tháng 3 2022

a, Xét ΔHBA và ΔABC có :

\(\widehat{H}=\widehat{A}=90^0\)

\(\widehat{B}:chung\)

\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g-g\right)\)

b, Xét ΔABC vuông A, theo định lý Pi-ta-go ta được :

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20\left(cm\right)\)

Ta có : \(\Delta HBA\sim\Delta ABC\left(cmt\right)\)

\(\Rightarrow\dfrac{AH}{AC}=\dfrac{AB}{BC}\)

hay \(\dfrac{AH}{16}=\dfrac{12}{20}\)

\(\Rightarrow AH=\dfrac{16.12}{20}=9,6\left(cm\right)\)

14 tháng 9 2017

Nguyễn Thị Thơm bn tham khảo ở đây nhé:

Theo hệ thức lượng tam giác vuông 

AC2 = HC x BC = 16 x BC

AH2 = HC x BH = 16 x BH

1/AH2 = 1/AC2 + 1/AB2

Thay 1,2 vào 3 

1/16 x BH = 1/16 x BC + 1/152

Mặt khác:

BH = BC - HC = BC - 164

Thay vào 4

1/16 x ( BC - 16 ) = 1/16 x BC + 1/225

<=> 1/( BC - 16 ) - 1/BC = 16/225 

<=> ( BC - BC + 16 )/(( BC - 16 ) x BC )

=> BC = 25 ( thỏa mãn ) BC = -9 ( loại ) 

Thay vào 1 ta có AC = 20 cm

 2 ta có AH = 12 cm

Vậy: AH = 12 cm

7 tháng 7 2015

a) Ta có: AB2 + AC2 = 202 + 152 = 625

BC2 = 252 = 625

nên AB2 + AC2 = BC2

    Suy ra tam giác ABC vuông do định lí Pi-ta-go đảo

b)    Áp dụng định lí Pitago trong tam giác vuông ACH được:

    HC2 + HA2 = AC2

CH2 = 152 - 122

CH2 = 81

=> CH=9 (cm)

     Áp dụng định lí Pitago trong tam giác vuông AHB được:

                 AH2 + BH2 = AB2

               122 + BH2 = 202

=> BH2 = 202 - 122 = 256

=> BH=16 cm 

7 tháng 7 2015

Hình bạn tự kẻ nhé . 

a)  Ta có AB2+AC2 = 202+152= 625

Lại có BC2 = 252 = 625

=> Tam giác ABC vuông ( Py ta go )

b) Ta có AH là đường cao 

=> Tam giác ABH và tam giác ACH vuông tại H

Áp dụng Py ta go vào tam giác vuông ACH ta được :

AC2=CH2+ AH2

=> 152 = CH2 + 122

=> CH2 =  152 - 122 = 81

=> CH = 9 ( cm)

=> BH = BC-CH = 25- 9 = 16  ( cm)

Bài 2: 

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot EB=HE^2\)

b: Xét tứ giác AEHF có

\(\widehat{FAE}=\widehat{AFH}=\widehat{AEH}=90^0\)

Do đó: AEHF là hình chữ nhật

Suy ra: FE=AH và \(\widehat{FHE}=90^0\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot FC=FH^2\)

Áp dụng định lí Pytago vào ΔFHE vuông tại H, ta được:

\(HF^2+HE^2=FE^2\)

\(\Leftrightarrow AH^2=AE\cdot EB+AF\cdot FC\)

19 tháng 8 2021

1) Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông, ta được:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{9+16}=\sqrt{25}=5\)(cm)

BH \(=\dfrac{AB^2}{BC}=\dfrac{9}{5}\)(cm)

\(CH=\dfrac{AC^2}{BC}=\dfrac{16}{5}\left(cm\right)\)

\(AH=\dfrac{AB.AC}{BC}=\dfrac{12}{5}\left(cm\right)\)

2) a) Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông, ta được điều phải chứng minh.

b)Chứng minh tương tự câu a), ta được:

AF.FC=HF^2

Lại có:

Tứ giác AFHE có 3 góc vuông nên từ giác AFHE là hình chữ nhật.

Suy ra, HF = AE

Suy ra, AF.FC=AE^2

Mà AE.EB=HE^2

Nên AF.FC+AE.EB=AE^2+HE^2=AH^2(đpcm)

3) Áp dụng hệ thức về cạnh và góc trong tam giác, ta được:

\(BE=\cos B.BH=\cos B.\left(\cos B.AB\right)=\cos^2B.AB=\cos^2B.\left(\cos B.BC\right)=\cos^3.BC\left(đpcm\right)\)

16 tháng 3 2022

nhanh giúp mình với đang cần gấp

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

b: AH=12cm

c: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

\(\widehat{MAH}=\widehat{NAH}\)

Do đó: ΔAMH=ΔANH

Suy ra: AM=AN

d: Xét ΔABC có AM/AB=AN/AC

nên MN//BC