Tính tổng
1/1.3+1/3.5+1/5.7+...1/2003.2005
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2003.2005}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2003}-\frac{1}{2005}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{2005}\right)\)
\(=\frac{1}{2}.\frac{2004}{2005}\)
\(=\frac{1002}{2005}\)
Đặt :
\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+....+\dfrac{1}{2003.2005}\)
\(\Leftrightarrow2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+.......+\dfrac{2}{2003.2005}\)
\(\Leftrightarrow2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+.......+\dfrac{1}{2003}-\dfrac{1}{2005}\)
\(\Leftrightarrow2A=1-\dfrac{1}{2005}\)
\(\Leftrightarrow2A=\dfrac{2004}{2005}\)
\(\Leftrightarrow A=\dfrac{1002}{2005}\)
\(M=\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{2003.2005}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2003.2005}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2003}-\dfrac{1}{2005}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{2005}\right)\)
\(=\dfrac{1}{2}.\dfrac{2004}{2005}=\dfrac{1002}{2005}\)
Đặt biểu thức là A
\(2A=\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+...+\dfrac{2005-2003}{2003.2005}=\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2003}-\dfrac{1}{2005}=1-\dfrac{1}{2005}=\dfrac{2004}{2005}\)
\(\Rightarrow A=\dfrac{2004}{2005}:2=\dfrac{1002}{2005}\)
Gọi tổng trên là A. Ta có
2A=\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2003.2005}\)
2A=\(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2003}-\dfrac{1}{2005}\)
2A=\(\dfrac{1}{1}-\dfrac{1}{2005}=\dfrac{2005}{2005}-\dfrac{1}{2005}=\dfrac{2004}{2005}\)
⇒ A= \(\dfrac{2004}{2005}:2=\dfrac{2004}{2005}.\dfrac{1}{2}=\dfrac{1002}{2005}\)
Vậy tổng trên bằng \(\dfrac{1002}{2005}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2003\cdot2005}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2003}-\dfrac{1}{2005}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2004}{2005}=\dfrac{1002}{2005}\)
a) 1/1.2 + 1/2.3 + 1/3.4 +...+ 1/2003.2004 = 1/1 - 1/2 +1/2 - 1/3 +...+ 1/2003 -1/2004 = 1 - 1/2004
b) Đặt B = 1/1.3 + 1/3.5 + 1/5.7 +...+ 1/2003.2005 => 2B = 2(1/1.3 + 1/3.5 + 1/5.7 +...+ 1/2003.2005) => 2B = 2/3.5 + 2/5.7 + 2/7.9 +...+ 2/2003.2005 => 2B = 1/3 - 1/5 + 1/5 - 1/7 +1/7 - 1/9 +...+ 1/2003 - 1/2005 => 2B = 1/3 - 1/2005 = 2012/6015 => B = 2012/6015 : 2 = 1001/6015
( Cái này là để bạn hiểu thêm cách mình làm ở trên : C/m : a/k.(k+a) = a/k - a/k+a
Ta có : a/k.(k+a) = (k+a) - k/k.(k+a) = k+a/k.(k+a) - k/k.(k+a) = a/k - a/k+a)
Bấm đúng cho mình nhe
\(\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{2001\times2003}+\frac{1}{2003\times2005}=\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{2001\times2003}+\frac{2}{2003\times2005}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2001}-\frac{1}{2003}+\frac{1}{2003}-\frac{1}{2005}\right)=\frac{1}{2}\times\left(1-\frac{1}{2005}\right)=\frac{1}{2}\times\frac{2004}{2005}=\frac{1002}{2005}\)
Chúc bạn học tốt
thanks bạn nha