a)x^2+11x+24
b)x^2+x-24
c)x^2+9x+20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(a,=x^4-3x^3+5x^3-15x^2-x^2+3x-5x+15\\ =\left(x-3\right)\left(x^3+5x^2-x-5\right)\\ =\left(x-3\right)\left(x+5\right)\left(x^2-1\right)\\ =\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+5\right)\\ b,=2x^4-2x^3+x^3-x^2-8x^2+8x+5x-5\\ =\left(x-1\right)\left(2x^3+x^2-8x+5\right)\\ =\left(x-1\right)\left(2x^3+5x^2-4x^2-10x+2x+5\right)\\ =\left(x-1\right)\left(2x+5\right)\left(x^2-2x+1\right)\\ =\left(x-1\right)^3\left(2x+5\right)\)
2.
\(a,=n^3\left(n+2\right)-n\left(n+2\right)=n\left(n^2-1\right)\left(n+2\right)\\ =\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Đây là tích 4 số nguyên liên tiếp nên chia hết cho \(1\cdot2\cdot3\cdot4=24\)
Suy ra đpcm
Bổ sung điều kiện câu b: n chẵn và n>4
\(b,=n\left(n^3-4n^2-4n+16\right)=n\left[n^2\left(n-4\right)-4\left(n-4\right)\right]\\ =\left(n-4\right)\left(n-2\right)n\left(n+2\right)\)
Với n chẵn và \(n>4\) thì đây là tích 4 số nguyên chẵn liên tiếp nên chia hết cho \(2\cdot4\cdot6\cdot8=384\)
\(\Leftrightarrow\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+3}-\dfrac{1}{x+6}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{x+6-x-3}{\left(x+3\right)\left(x+6\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow x^2+9x+18=54\)
\(\Leftrightarrow x^2+9x-36=0\)
=>(x+12)(x-3)=0
=>x=-12 hoặc x=3
\(ĐKXĐ:x\ne-3,-4,-5,-6\)
\(\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}=\dfrac{1}{18}\\ \Leftrightarrow\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{18}\\ \Leftrightarrow\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}=\dfrac{1}{18}\\ \Leftrightarrow\dfrac{1}{x+3}-\dfrac{1}{x+6}=\dfrac{1}{18}\\ \Leftrightarrow\dfrac{x+6-x-3}{\left(x+3\right)\left(x+6\right)}=\dfrac{1}{18}\\ \Leftrightarrow\dfrac{3}{x^2+9x+18}=\dfrac{1}{18}\\ \Leftrightarrow x^2+9x+18=54\)
\(\Leftrightarrow x^2+9x-36=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-12\left(tm\right)\end{matrix}\right.\)
\(\left(x^2+11x+12\right)\left(x^2+9x+20\right)\left(x^2+13x+42\right)=36\left(x^2+11x+30\right)\left(x^2+11x+31\right)\)
\(\Leftrightarrow\left(x^2+11x+12\right)\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)=36\left(x^2+11x+30\right)\left(x^2+11x+31\right)\)
\(\Leftrightarrow\left(x^2+11x+12\right)\left(x^2+11x+28\right)\left(x^2+11x+30\right)=36\left(x^2+11x+30\right)\left(x^2+11x+31\right)\)
Đặt \(x^2+11x+30=a\)
\(\Leftrightarrow\left(a-18\right)\left(a-2\right)a=36a\left(a+1\right)\)
\(\Leftrightarrow a^3-56a^2=0\)
\(\Leftrightarrow a^2\left(a-56\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\\a=56\end{matrix}\right.\)
Với \(a=0\Leftrightarrow x^2+11x+30=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-6\end{matrix}\right.\)
Với \(a=56\Leftrightarrow x^2+11x+30=56\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-13\\x=2\end{matrix}\right.\)
đề sai rồi bạn , phải là ( x2+11x + 12)(x2+9x+20 ) = 36(x2+11x+30)(x2+11x+31)
Đk:\(x\ne2;x\ne3;x\ne4;x\ne5;x\ne6\)
\(pt\Leftrightarrow\frac{1}{\left(x-6\right)\left(x-5\right)}+\frac{1}{\left(x-5\right)\left(x-4\right)}+...+\frac{1}{\left(x-3\right)\left(x-2\right)}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x-6}-\frac{1}{x-5}+\frac{1}{x-5}-\frac{1}{x-4}+\frac{1}{x-4}+...+\frac{1}{x-3}-\frac{1}{x-2}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x-6}-\frac{1}{x-2}=\frac{1}{8}\)\(\Leftrightarrow\frac{x-2}{\left(x-6\right)\left(x-2\right)}-\frac{x-6}{\left(x-2\right)\left(x-6\right)}=\frac{1}{8}\)
\(\Leftrightarrow\frac{4}{\left(x-6\right)\left(x-2\right)}=\frac{1}{8}\Leftrightarrow\left(x-2\right)\left(x-6\right)=32\)
\(\Leftrightarrow x^2-8x+12=32\Leftrightarrow x^2-8x-20=0\)
\(\Leftrightarrow\left(x-10\right)\left(x+2\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=10\\x=-2\end{cases}}\)
ĐK : \(x\ne-2.-3;-4;-5;-6\)
\(\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+6}=\dfrac{1}{8}\Leftrightarrow\dfrac{x+6-x-2}{\left(x+2\right)\left(x+6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{4}{\left(x+2\right)\left(x+6\right)}=\dfrac{1}{8}\Leftrightarrow x^2+8x-20=0\Leftrightarrow\left(x-2\right)\left(x+10\right)=0\Leftrightarrow x=2;x=-10\)( tmđkxđ )
Vậy tập nghiệm phương trình là S = { -10 ; 2 }
ĐKXĐ \(x\notin\left\{-2;-3;...;-6\right\}\)
Phương trình tương đương với:
\(\dfrac{1}{\left(x^2+2x\right)+\left(3x+6\right)}+\dfrac{1}{\left(x^2+3x\right)+\left(4x+12\right)}+\dfrac{1}{\left(x^2+4x\right)+\left(5x+20\right)}+\dfrac{1}{\left(x^2+5x\right)+\left(6x+30\right)}=\dfrac{1}{8}\\ \Leftrightarrow\dfrac{\left(x+3\right)-\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}+\dfrac{\left(x+4\right)-\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}+\dfrac{\left(x+5\right)-\left(x+4\right)}{\left(x+4\right)\left(x+5\right)}+\dfrac{\left(x+6\right)-\left(x+5\right)}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{8}\\ \Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}=\dfrac{1}{8}\\ \Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+6}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{4}{\left(x+2\right)\left(x+6\right)}=\dfrac{4}{32}\\ \Rightarrow\left(x+2\right)\left(x+6\right)=32\\\Leftrightarrow x^2+8x-20=0\\ \Leftrightarrow\left(x+10\right)\left(x-2\right)=0\\ \Leftrightarrow\begin{matrix}x=2\\x=-10\end{matrix}\left(t.m\right)\)
$ĐKXĐ:x \neq -4;-5;-6;-7$
$pt⇔\dfrac{1}{x^2+4x+5x+20}+\dfrac{1}{x^2+5x+6x+30}+\dfrac{1}{x^2+6x+7x+42}=\dfrac{1}{18}$
$⇔\dfrac{1}{(x+4)(x+5)}+\dfrac{1}{(x+5)(x+6)}+\dfrac{1}{(x+6)(x+7)}=\dfrac{1}{18}$
$⇔\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}$
$⇔\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}$
$⇔\dfrac{3}{(x+4)(x+7)}=\dfrac{1}{18}$
$⇔x^2+11x+28=54$
$⇔x^2+11x-26=0$
$⇔x^2-2x+13x-26=0$
$⇔(x-2)(x+13)=0$
$⇔$ \(\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)(t/m)
Vậy phương trình đã cho có tập nghiệm $S=(2;-13)$
Trả lời:
(bài này tìm GTNN đúng không?)
a, \(x^2+11x+24=x^2+2.x.\frac{11}{2}+\frac{121}{4}-\frac{25}{4}=\left(x+\frac{11}{2}\right)^2-\frac{25}{4}\ge-\frac{25}{4}\forall x\)
Dấu "=" xảy ra khi x + 11/2 = x = - 11/2
Vậy GTNN của bt = - 25/4 khi x = - 11/2
b, \(x^2+x-24=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{97}{4}=\left(x+\frac{1}{2}\right)^2-\frac{97}{4}\ge-\frac{97}{4}\ge-\frac{97}{4}\forall x\)
Dấu "=" xảy ra khi x + 1/2 = 0 <=> x = - 1/2
Vậy GTNN của bt = - 97/4 khi x = - 1/2
c, \(x^2+9x+20=x^2+2.x.\frac{9}{2}+\frac{81}{4}-\frac{1}{4}=\left(x+\frac{9}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\forall x\)
Dấu "=" xảy ra khi x + 9/2 = 0 <=> x = - 9/2
Vậy GTNN của bt = - 1/4 khi x = - 9/2